1987 USAMO Problems/Problem 5

Revision as of 17:44, 18 July 2016 by 1=2 (talk | contribs) (Created page with "== Problem == <math>a_1, a_2, \cdots, a_n</math> is a sequence of 0's and 1's. T is the number of triples <math>(a_i, a_j, a_k)</math> with <math>i<j<k</math> which are not eq...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

$a_1, a_2, \cdots, a_n$ is a sequence of 0's and 1's. T is the number of triples $(a_i, a_j, a_k)$ with $i<j<k$ which are not equal to (0, 1, 0) or (1, 0, 1). For $1\le i\le n$, $f(i)$ is the number of $j<i$ with $a_j = a_i$ plus the number of $j>i$ with $a_j\neq a_i$. Show that $T=\sum_{i=1}^n f(i)\cdot\left(\frac{f(i)-1}2\right)$. If n is odd, what is the smallest value of T?

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1987 USAMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Last Question
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png