1976 AHSME Problems/Problem 20

Revision as of 12:31, 16 December 2016 by E power pi times i (talk | contribs) (Created page with "Let <math>a,~b</math>, and <math>x</math> be positive real numbers distinct from one. Then <math>4(\log_ax)^2+3(\log_bx)^2=8(\log_ax)(\log_bx)</math> <math>\textbf{(A) }\text...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Let $a,~b$, and $x$ be positive real numbers distinct from one. Then $4(\log_ax)^2+3(\log_bx)^2=8(\log_ax)(\log_bx)$

$\textbf{(A) }\text{for all values of }a,~b,\text{ and }x\qquad\\ \textbf{(B) }\text{if and only if }a=b^2\qquad\\ \textbf{(C) }\text{if and only if }b=a^2\qquad\\ \textbf{(D) }\text{if and only if }x=ab\qquad\\ \textbf{(E) }\text{for none of these}$


Solution

Because $\log_mn = \dfrac{\log{n}}{\log{m}}$, $4(\log_ax)^2+3(\log_bx)^2 = \dfrac{4(\logx)^2}{(\loga)^2}+\dfrac{3(\logx)^2}{(\logb)^2} = \dfrac{(\logx)^2(4(\loga)^2+3(\logb)^2)}{(\loga\logb)^2}$ (Error compiling LaTeX. Unknown error_msg).