1979 AHSME Problems/Problem 25

Revision as of 11:57, 10 January 2017 by E power pi times i (talk | contribs) (Created page with "== Problem 25 == If <math>q_1 ( x )</math> and <math>r_ 1</math> are the quotient and remainder, respectively, when the polynomial <math>x^ 8</math> is divided by <math>x +...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 25

If $q_1 ( x )$ and $r_ 1$ are the quotient and remainder, respectively, when the polynomial $x^ 8$ is divided by $x + \tfrac{1}{2}$ , and if $q_ 2 ( x )$ and $r_2$ are the quotient and remainder, respectively, when $q_ 1 ( x )$ is divided by $x + \tfrac{1}{2}$, then $r_2$ equals

$\textbf{(A) }\frac{1}{256}\qquad \textbf{(B) }-\frac{1}{16}\qquad \textbf{(C) }1\qquad \textbf{(D) }-16\qquad \textbf{(E) }256$

Solution

Solution by e_power_pi_times_i

First, we divide $x^8$ by $x+\frac{1}{2}$ using synthetic division or some other method. The quotient is $x^7-\frac{1}{2}x^6+\frac{1}{4}x^5-\frac{1}{8}x^4+\frac{1}{16}x^3-\frac{1}{32}x^2+\frac{1}{64}x-\frac{1}{128}$, and the remainder is $\frac{1}{128}$. Then we plug the solution to $x+\frac{1}{2} = 0$ into the quotient to find the remainder. Notice that every term in the quotient, when $x=-\frac{1}{2}$, evaluates to $-\frac{1}{128}$. Thus $r_2 =-\frac{8}{128} = \boxed{\textbf{(B) } -\frac{1}{16}}$.