2007 AIME I Problems/Problem 14

Revision as of 01:03, 26 January 2017 by IMOJonathan (talk | contribs)

Problem

A sequence is defined over non-negative integral indexes in the following way: $a_{0}=a_{1}=3$, $a_{n+1}a_{n-1}=a_{n}^{2}+2007$.

Find the greatest integer that does not exceed $\frac{a_{2006}^{2}+a_{2007}^{2}}{a_{2006}a_{2007}}$

Solution 1

We are given that

$a_{n+1}a_{n-1}= a_{n}^{2}+2007$, $a_{n-1}^{2}+2007 = a_{n}a_{n-2}$.

Add these two equations to get

$a_{n-1}(a_{n-1}+a_{n+1}) = a_{n}(a_{n}+a_{n-2})$
$\frac{a_{n+1}+a_{n-1}}{a_{n}}= \frac{a_{n}+a_{n-2}}{a_{n-1}}$.

This is an invariant. Defining $b_{i}= \frac{a_{i}}{a_{i-1}}$ for each $i \ge 2$, the above equation means

$b_{n+1}+\frac{1}{b_{n}}= b_{n}+\frac{1}{b_{n-1}}$.

We can thus calculate that $b_{2007}+\frac{1}{b_{2006}}= b_{3}+\frac{1}{b_{2}}= 225$. Now notice that $b_{2007}= \frac{a_{2007}}{a_{2006}}= \frac{a_{2006}^{2}+2007}{a_{2006}a_{2005}}> \frac{a_{2006}}{a_{2005}}= b_{2006}$. This means that

$b_{2007}+\frac{1}{b_{2007}}< b_{2007}+\frac{1}{b_{2006}}= 225$. It is only a tiny bit less because all the $b_i$ are greater than $1$, so we conclude that the floor of $\frac{a_{2007}^{2}+a_{2006}^{2}}{a_{2007}a_{2006}}= b_{2007}+\frac{1}{b_{2007}}$ is $224$.

Solution 2

The equation $a_{n+1}a_{n-1}-a_n^2=2007$ looks like the determinant \[\left|\begin{array}{cc}a_{n+1}&a_n\\a_n&a_{n-1}\end{array}\right|=2007.\] Therefore, the determinant of this matrix is invariant. Guessing that this sequence might be a linear recursion because of the matrix form given below, we define the sequence $b_n$ defined by $b_1=b_2=3$ and $b_{n+1}=\alpha b_n+\beta b_{n-1}$ for $n\ge 2$. We wish to find $\alpha$ and $\beta$ such that $a_n=b_n$ for all $n\ge 1$. To do this, we use the following matrix form of a linear recurrence relation

\[\left(\begin{array}{cc}b_{n+1}&b_n\\b_n&b_{n-1}\end{array}\right)=\left(\begin{array}{cc}\alpha&\beta\\1&0\end{array}\right)\left(\begin{array}{cc}b_{n}&b_{n-1}\\b_{n-1}&b_{n-2}\end{array}\right).\]

When we take determinants, this equation becomes

\[\text{det}\left(\begin{array}{cc}b_{n+1}&b_n\\b_n&b_{n-1}\end{array}\right)=\text{det}\left(\begin{array}{cc}\alpha&\beta\\1&0\end{array}\right)\text{det}\left(\begin{array}{cc}b_{n}&b_{n-1}\\b_{n-1}&b_{n-2}\end{array}\right).\]

We want \[\text{det}\left(\begin{array}{cc}b_{n+1}&b_n\\b_n&b_{n-1}\end{array}\right)=2007\] for all $n$. Therefore, we replace the two matrices by $2007$ to find that

\[2007=\text{det}\left(\begin{array}{cc}\alpha&\beta\\1&0\end{array}\right)\cdot 2007\] \[1=\text{det}\left(\begin{array}{cc}\alpha&\beta\\1&0\end{array}\right)=-\beta.\] Therefore, $\beta=-1$. Computing that $a_3=672$, and using the fact that $b_3=\alpha b_2-b_1$, we conclude that $\alpha=225$. Clearly, $a_1=b_1$, $a_2=b_2$, and $a_3=b_3$. We claim that $a_n=b_n$ for all $n\ge 1$. We proceed by induction. If $a_k=b_k$ for all $k\le n$, then clearly, \[b_nb_{n-2}-b_{n-1}^2=a_na_{n-2}-a_{n-1}^2=2007.\] We also know by the definition of $b_{n+1}$ that

\[\text{det}\left(\begin{array}{cc}b_{n+1}&b_n\\b_n&b_{n-1}\end{array}\right)=\text{det}\left(\begin{array}{cc}\alpha&\beta\\1&0\end{array}\right)\text{det}\left(\begin{array}{cc}b_{n}&b_{n-1}\\b_{n-1}&b_{n-2}\end{array}\right).\]

We know that the RHS is $2007$ by previous work. Therefore, $b_{n+1}b_{n-1}-b_n^2=2007$. After substuting in the values we know, this becomes $b_{n+1}a_{n-1}-a_n^2=2007$. Thinking of this as a linear equation in the variable $b_{n+1}$, we already know that this has the solution $b_{n+1}=a_{n+1}$. Therefore, by induction, $a_n=b_n$ for all $n\ge 1$. We conclude that $a_n$ satisfies the linear recurrence $a_{n+1}=225a_n-a_{n-1}$.

It's easy to prove that $a_n$ is a strictly increasing sequence of integers for $n\ge 3$. Now

\[\frac{a_{2007}^2+a_{2006}^2}{a_{2007}a_{2006}}=\frac{a_{2007}}{a_{2006}}+\frac{a_{2006}}{a_{2007}}=\frac{225a_{2006}-a_{2005}}{a_{2006}}+\frac{a_{2006}}{a_{2007}}.\]

\[=225+\frac{a_{2006}}{a_{2007}}-\frac{a_{2005}}{a_{2006}}=225+\frac{a_{2006}^2-a_{2005}a_{2007}}{a_{2005}a_{2006}}.\]

\[=225-\frac{2007}{a_{2005}a_{2006}}.\]

The sequence certainly grows fast enough such that $\frac{2007}{a_{2005}a_{2006}}<1$. Therefore, the largest integer less than or equal to this value is $224$.

Solution 3 ( generalized )

This is a more elementary and rigorous solution to a slightly generalized version. The defining recursive sequence is generalized to

\[a_{n+1}a_{n-1} = a_n^2 + 9k, ---------(1)\] where $k$ is a positive integer and $a_0 = a_1 = 3.$

Lemma 1  : For $n \geq 1$, \[a_{n+1} = ( k + 2)a_n - a_{n-1}. ---------(2)\] We shall prove by induction. From (1), $a_2 = 3k + 3$. From the lemma, $a_2 = (k + 2) 3 - 3 = 3k + 3.$ Base case proven. Assume that the lemma is true for some $t \geq 1$. Then, eliminating the $a_{t-1}$ using (1) and (2) gives

\[(k+2)a_ta_{t+1} = a_t^2 + a_{t+1}^2 + 9k. ---------(3)\]

It follows from (2) that

\[(k+2)a_{t+1} - a_t  =\frac{(k+2)a_{t+1}a_t - a_t^2}{a_t}  =\frac{a_{t+1}^2 + 9k}{a_t} =a_{t+2},\]

where the last line followed from (1) for case $n = t+1$.

Lemma 2 : For $n \geq 0,$ \[a_{n+1} \geq a_{n}.\] Base case is obvious. Assume that $a_{t+1} \geq a_{t}$ for some $t \geq 0$. Then it follows that \[a_{t+2} =\frac{a_{t+1}^2 + 9k}{a_t}  = a_{t+1}(\frac{a_{t+1}}{a_t} ) + 9k \geq a_{t+1} + 9k  > a_{t+1}.\]

This completes the induction.

Lemma 3 : For $n \geq 1,$ \[a_n a_{n+1} > 9k\]

Using (1) and Lemma 2, for $n \geq 1,$ \[a_{n+1}a_n \geq a_{n+1}a_{n-1}  = a_n^2 + 9k  > 9k\]

Finally, using (3), for $n \geq 1,$ \[\frac{a_n^2 + a_{n+1}^2}{a_n a_{n+1}} =\frac{(k+2)a_n a_{n+1} - 9k}{a_n a_{n+1}} = k+2 -\frac{9k}{a_n a_{n+1}}.\] Using lemma 3, the largest integer less than or equal to this value would be $k + 1$.

Solution 4

We will try to manipulate $\frac{a_0^2+a_1^2}{a_0a_1}$ to get $\frac{a_1^2+a_2^2}{a_1a_2}$. $\frac{a_0^2+a_1^2}{a_0a_1} = \frac{a_0+\frac{a_1^2}{a_0}}{a_1} = \frac{a_0+\frac{a_1^2+2007}{a_0}-\frac{2007}{a_0}}{a_1}$ Using the recurrence relation, $= \frac{a_0+a_2-\frac{2007}{a_0}}{a_1}  = \frac{a_0a_2+a_2^2-\frac{2007a_2}{a_0}}{a_1a_2}$ Applying the relation to $a_0a_2$, $= \frac{a_1^2+2007+a_2^2-\frac{2007a_2}{a_0}}{a_1a_2} = \frac{a_1^2+a_2^2}{a_1a_2}+\frac{2007}{a_1}{a_2}-\frac{2007}{a_0}{a_1}$

We can keep on using this method to get that $\frac{a_0^2+a_1^2}{a_0a_1} = \frac{a_{2006}^2+a_{2007}^2}{a_{2006}a_{2007}}+\frac{2007}{a_{2006}a_{2007}}-\frac{2007}{a_{2005}a_{2006}}+\frac{2007}{a_{2005}a_{2006}}-\ldots-\frac{2007}{a_{0}a_{1}}$

This telescopes to $\frac{a_0^2+a_1^2}{a_0a_1} = \frac{a_{2006}^2+a_{2007}^2}{a_{2006}a_{2007}}+\frac{2007}{a_{2006}a_{2007}}-\frac{2007}{a_{0}a_{1}}$

or $\frac{a_{2006}^2+a_{2007}^2}{a_{2006}a_{2007}} = \frac{a_0^2+a_1^2}{a_0a_1}+\frac{2007}{a_{0}a_{1}}-\frac{2007}{a_{2006}a_{2007}}$

Finding the first few values, we notice that they increase rapidly, so $\frac{2007}{a_{2006}a_{2007}} < 1$. Calculating the other values, $\frac{a_{2006}^2+a_{2007}^2}{a_{2006}a_{2007}} = 2+223-\frac{2007}{a_{2006}a_{2007}}$.

The greatest number that does not exceed this is $224$.

See also

2007 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png