2017 USAMO Problems/Problem 1

Revision as of 18:33, 20 April 2017 by Mathcounts46 (talk | contribs) (Problem)

Problem

Prove that there are infinitely many distinct pairs $(a,b)$ of relatively prime positive integers $a>1$ and $b>1$ such that $a^b+b^a$ is divisible by $a+b$.

Solution

Let $n=a+b$. Since $gcd(a,b)=1$, we know $gcd(a,n)=1$. We can rewrite the condition as

\[a^{n-a}+(n-a)^a \equiv 0 \mod{n}\] \[a^{n-a}\equiv-(-a)^a \mod{n}\] Assume $a$ is odd. Since we need to prove an infinite number of pairs exist, it suffices to show that infinitely many pairs with $a$ odd exist.

Then we have \[a^{n-a}\equiv a^a \mod{n}\] \[1 \equiv a^{2a-n} \mod{n}\]

We know by Euler's theorem that $a^{\varphi(n)} \equiv 1 \mod{n}$, so if $2a-n=\varphi(n)$ we will have the required condition.

This means $a=\frac{n+\varphi(n)}{2}$. Let $n=2p$ where $p$ is a prime, $p\equiv 1\mod{4}$. Then $\varphi(n) = 2p*\left(1-\frac{1}{2}\right)\left(1-\frac{1}{p}\right) = p-1$, so \[a = \frac{2p+p-1}{2} = \frac{3p-1}{2}\] Note the condition that $p\equiv 1\mod{4}$ guarantees that $a$ is odd, since $3p-1 \equiv 2\mod{4}$

This makes $b = \frac{p+1}{2}$. Now we need to show that $a$ and $b$ are relatively prime. If $a$ and $b$ have a common factor $k$, then we know $k|a+b=2p$. Therefore $k=1,2,p,$ or $2p$. We know $b=\frac{p+1}{2}<p$, so $p \nmid b$ and $2p\nmid b$. We also know $a$ is odd, so $2\nmid a$. This means the only common factor $a$ and $b$ have is $1$, so $a$ and $b$ are relatively prime.

Therefore, for all primes $p \equiv 1\mod{4}$, the pair $\left(\frac{3p-1}{2},\frac{p+1}{2}\right)$ satisfies the criteria, so infinitely many such pairs exist.