2017 IMO Problems/Problem 6

Revision as of 05:20, 17 December 2017 by Don2001 (talk | contribs) (Created page with "An ordered pair <math>(x, y)</math> of integers is a primitive point if the greatest common divisor of <math>x</math> and <math>y</math> is <math>1</math>. Given a finite set...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

An ordered pair $(x, y)$ of integers is a primitive point if the greatest common divisor of $x$ and $y$ is $1$. Given a finite set $S$ of primitive points, prove that there exist a positive integer $n$ and integers $a_0, a_1, \ldots , a_n$ such that, for each $(x, y)$ in $S$, we have: \[a_0x^n + a_1x^{n-1} y + a_2x^{n-2}y^2 + \cdots + a_{n-1}xy^{n-1} + a_ny^n = 1.\]

solution