Phi

Revision as of 09:38, 22 August 2006 by IntrepidMath (talk | contribs)

Phi ($\phi$) is a letter in the Greek alphabet. It is often used to represent the constant $\frac{1+\sqrt{5}}{2}$. $\phi$ appears in a variety of different mathematical contexts: it is the limit of the ratio of successive terms of the Fibonacci sequence, as well as the positive solution of the quadratic equation $x^2-x-1=0$.

Phi is also known as the Golden Ratio. It was commonly believed by the Greeks to be the most aesthetically pleasing ratio between side lengths in a rectangle. The Golden Rectangle is a rectangle with side lengths of 1 and x, $\phi$ has to do with one of the surprising ratios.

The first few digits of Phi in decimal representation are: 1.61803398874989...

Phi is also commonly used to represent Euler's totient function.

Phi appears in many uses, including Physics, Biology and many others.

See also

This article is a stub. Help us out by expanding it.