# Difference between revisions of "1951 AHSME Problems/Problem 22"

## Problem

The values of $a$ in the equation: $\log_{10}(a^2 - 15a) = 2$ are:

$\textbf{(A)}\ \frac {15\pm\sqrt {233}}{2} \qquad\textbf{(B)}\ 20, - 5 \qquad\textbf{(C)}\ \frac {15 \pm \sqrt {305}}{2}$ $\textbf{(D)}\ \pm20 \qquad\textbf{(E)}\ \text{none of these}$

## Solution

Putting into exponential form, we get that $10^2=a^2-15a\Rightarrow a^2-15a-100=0$

Now we use the quadratic formula to solve for $a$, and we get $a=\frac{15\pm\sqrt{625}}{2}\implies a=\boxed{\textbf{(B)}\ 20, - 5}$

## See Also

 1951 AHSC (Problems • Answer Key • Resources) Preceded byProblem 21 Followed byProblem 23 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.

Invalid username
Login to AoPS