Difference between revisions of "1964 AHSME Problems/Problem 37"

(Problem)
(Problem)
Line 6: Line 6:
  
 
<math>\textbf{(D) }\dfrac{(b-a)^2}{8a}\qquad \textbf{(E) }\dfrac{(b-a)^2}{8b}</math>
 
<math>\textbf{(D) }\dfrac{(b-a)^2}{8a}\qquad \textbf{(E) }\dfrac{(b-a)^2}{8b}</math>
 +
 +
==Solution==

Revision as of 22:40, 6 July 2018

Problem

Given two positive number $a$, $b$ such that $a<b$. Let A.M. be their arithmetic mean and let G.M. be their positive geometric mean. Then A.M. minus G.M. is always less than:

$\textbf{(A) }\dfrac{(b+a)^2}{ab}\qquad\textbf{(B) }\dfrac{(b+a)^2}{8b}\qquad\textbf{(C) }\dfrac{(b-a)^2}{ab}$

$\textbf{(D) }\dfrac{(b-a)^2}{8a}\qquad \textbf{(E) }\dfrac{(b-a)^2}{8b}$

Solution

Invalid username
Login to AoPS