Difference between revisions of "1966 IMO Problems/Problem 4"

(Solution)
(Solution)
Line 7: Line 7:
 
First, we prove <math>\cot x - \cot 2x = \frac {1}{\sin 2x}</math>
 
First, we prove <math>\cot x - \cot 2x = \frac {1}{\sin 2x}</math>
  
LHS=\frac{\cos x}{\sin x}-\frac{\cos 2x}{\sin 2x}
+
LHS=<math>\frac{\cos x}{\sin x}-\frac{\cos 2x}{\sin 2x}</math>
  
= \frac{2\cos^2 x}{2\cos x \sin x}-\frac{2\cos^2 x -1}{\sin 2x}
+
<math>= \frac{2\cos^2 x}{2\cos x \sin x}-\frac{2\cos^2 x -1}{\sin 2x}</math>
  
=\frac{2\cos^2 x}{\sin 2x}-\frac{2\cos^2 x -1}{\sin 2x}
+
<math>=\frac{2\cos^2 x}{\sin 2x}-\frac{2\cos^2 x -1}{\sin 2x}</math>
  
=\frac {1}{\sin 2x}
+
<math>=\frac {1}{\sin 2x}</math>
  
 
Using the above formula, we can rewrite the original series as  
 
Using the above formula, we can rewrite the original series as  
  
\cot x - \cot 2x + \cot 2x - \cot 4x + \cot 4x \cdot \cdot \cdot + \cot 2^{n-1} x - \cot 2^n x  
+
<math>\cot x - \cot 2x + \cot 2x - \cot 4x + \cot 4x \cdot \cdot \cdot + \cot 2^{n-1} x - \cot 2^n x </math>
  
Which gives us the desired answer of \cot x - \cot 2^n x
+
Which gives us the desired answer of <math>\cot x - \cot 2^n x</math>

Revision as of 16:08, 27 September 2010

I can't add latex code on this page. Somebody add it for me.

Solution

Assume that $\frac{1}{\sin{2x}}+\frac{1}{\sin{4x}}+\dots+\frac{1}{\sin{2^{n}x}}=\cot{x}-\cot{2^{n}x}$ is true, then we use $n=1$ and get \cot x - \cot 2x = \frac {1}{\sin 2x}.

First, we prove $\cot x - \cot 2x = \frac {1}{\sin 2x}$

LHS=$\frac{\cos x}{\sin x}-\frac{\cos 2x}{\sin 2x}$

$= \frac{2\cos^2 x}{2\cos x \sin x}-\frac{2\cos^2 x -1}{\sin 2x}$

$=\frac{2\cos^2 x}{\sin 2x}-\frac{2\cos^2 x -1}{\sin 2x}$

$=\frac {1}{\sin 2x}$

Using the above formula, we can rewrite the original series as

$\cot x - \cot 2x + \cot 2x - \cot 4x + \cot 4x \cdot \cdot \cdot + \cot 2^{n-1} x - \cot 2^n x$

Which gives us the desired answer of $\cot x - \cot 2^n x$