# 1969 AHSME Problems/Problem 10

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

The number of points equidistant from a circle and two parallel tangents to the circle is: $\text{(A) } 0\quad \text{(B) } 2\quad \text{(C) } 3\quad \text{(D) } 4\quad \text{(E) } \infty$

## Solution $[asy] draw(circle((0,0),100)); draw((-300,100)--(300,100),Arrows); draw((-300,-100)--(300,-100),Arrows); draw((-300,0)--(300,0),dotted,Arrows); dot((-200,0)); dot((0,0)); dot((200,0)); draw((-200,100)--(-200,-100),dotted); draw((200,100)--(200,-100),dotted); [/asy]$ The distance between the two parallel tangents is the length of the circle's diameter, so the distance from a point that satisfies the conditions and the two tangents is the length of the circle's radius. From the diagram, there are $\boxed{\textbf{(C) } 3}$ points that satisfies the conditions.

## See also

 1969 AHSC (Problems • Answer Key • Resources) Preceded byProblem 9 Followed byProblem 11 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS