# 1969 AHSME Problems/Problem 10

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

The number of points equidistant from a circle and two parallel tangents to the circle is: $\text{(A) } 0\quad \text{(B) } 2\quad \text{(C) } 3\quad \text{(D) } 4\quad \text{(E) } \infty$

## Solution $[asy] draw(circle((0,0),100)); draw((-300,100)--(300,100),Arrows); draw((-300,-100)--(300,-100),Arrows); draw((-300,0)--(300,0),dotted,Arrows); dot((-200,0)); dot((0,0)); dot((200,0)); draw((-200,100)--(-200,-100),dotted); draw((200,100)--(200,-100),dotted); [/asy]$ The distance between the two parallel tangents is the length of the circle's diameter, so the distance from a point that satisfies the conditions and the two tangents is the length of the circle's radius. From the diagram, there are $\boxed{\textbf{(C) } 3}$ points that satisfies the conditions.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 