Difference between revisions of "1975 USAMO Problems/Problem 2"

(Solution 2)
Line 63: Line 63:
  
 
Let
 
Let
<cmath>\begin{align*}
+
 
 +
<center><math>\begin{align*}
 
A &= (0,0,0) \\
 
A &= (0,0,0) \\
 
B &= (1,0,0) \\
 
B &= (1,0,0) \\
 
C &= (a,b,c) \\
 
C &= (a,b,c) \\
 
D &= (x,y,z).
 
D &= (x,y,z).
\end{align*}</cmath>
+
\end{align*}</math></center>
 +
 
 
It is clear that every other case can be reduced to this.
 
It is clear that every other case can be reduced to this.
 
Then, with the distance formula and expanding,
 
Then, with the distance formula and expanding,
<cmath>\begin{align*}
+
 
 +
<center><math>\begin{align*}
 
AC^2 + BD^2 + AD^2 + BC^2 - AB^2 - CD^2 &= x^2-2x+1+y^2+z^2+a^2-2a+b^2+c^2+2ax+2by+2cz \\
 
AC^2 + BD^2 + AD^2 + BC^2 - AB^2 - CD^2 &= x^2-2x+1+y^2+z^2+a^2-2a+b^2+c^2+2ax+2by+2cz \\
 
&= (x+a-1)^2 + (y+b)^2 + (z+c)^2. \\
 
&= (x+a-1)^2 + (y+b)^2 + (z+c)^2. \\
 
&\geq 0,
 
&\geq 0,
\end{align*}</cmath>
+
\end{align*}</math></center>
 +
 
 
which rearranges to the desired inequality.
 
which rearranges to the desired inequality.
  

Revision as of 22:40, 21 April 2010

Problem

Let $A,B,C,D$ denote four points in space and $AB$ the distance between $A$ and $B$, and so on. Show that \[AC^2+BD^2+AD^2+BC^2\ge AB^2+CD^2.\]

Solution

Solution 1

[asy] defaultpen(fontsize(8)); pair A=(2,4), B=(0,0), C=(4,0), D=(4,2); label("A",A,(0,1));label("D",D,(1,0));label("B",B,(-1,-1));label("C",C,(1,-1)); axialshade(A--C--D--cycle, lightgray, A, gray, D); draw(A--B--C--A--D--C);draw(B--D, linetype("8 8")); label("$m$",(A+B)/2,(-1,1));label("$n$",(C+D)/2,(1,0)); label("$c$",(B+C)/2,(0,-1));label("$b$",(A+C)/2,(-1,-1)); label("$a$",(A+D)/2,(1,1));label("$d$",(B+D)/2,(-1,1)); [/asy]

If we project points $A,B,C,D$ onto the plane parallel to $\overline{AB}$ and $\overline{CD}$, $AB$ and $CD$ stay the same but $BC, AC, AD, BD$ all decrease, making the inequality sharper. Thus, it suffices to prove the inequality when $A,B,C,D$ are coplanar:

[asy] size(200); defaultpen(fontsize(8)); pair A=(8,3), B=(4,-5), C=(10,0), D=(0,0); draw(A--C--B--D--A--B);draw(C--D);draw(anglemark(A,B,D,40));draw(anglemark(C,B,A,55,60)); label("A",A,(0,1));label("D",D,(-1,0));label("B",B,(0,-1));label("C",C,(1,0)); label("$m$",(A+B)/2,(1,0));label("$n$",(C+D)/2,(0,1)); label("$c$",(B+C)/2,(1,-1));label("$b$",(A+C)/2,(-1,-1)); label("$a$",(A+D)/2,(0,1));label("$d$",(B+D)/2,(-1,-1)); label("$\phi-\theta$",anglemark(A,B,D,40),(1,5));label("$\theta$",anglemark(C,B,A,55),(8,9)); [/asy]

Let $AD=a, AC=b, BC=c, BD=d, AB=m, CD=n$. We wish to prove that $a^2+b^2+c^2+d^2\ge m^2+n^2$. Let us fix $\triangle BCD$ and the length $AB$ and let $A$ vary on the circle centered at $B$ with radius $m$. If we find the minimum value of $a^2+b^2$, which is the only variable quantity, and prove that it is larger than $m^2+n^2-c^2-d^2$, we will be done.

First, we express $a^2+b^2$ in terms of $c,d,m,\theta,\phi$, using the Law of Cosines: \begin{align*}  a^2+b^2 &= c^2+d^2+2m^2-2cm\cos(\theta)-2dm\cos(\phi-\theta) \\ (a^2+b^2-c^2-d^2-2m^2)^2 &= 4m^2(c^2\cos^2(\theta)+d^2\cos^2(\phi-\theta)+2cd\cos(\theta)\cos(\phi-\theta)) \end{align*} $a^2+b^2$ is a function of $\theta$, so we take the derivative with respect to $\theta$ and obtain that $a^2+b^2$ takes a minimum when \begin{align*} c\sin(\theta)-d\sin(\phi-\theta) &= 0 \\ c^2\sin^2(\theta)+d^2\sin^2(\phi-\theta)-2cd\sin(\theta)\sin(\phi-\theta) &= 0 \\ (a^2+b^2-c^2-d^2-2m^2)^2 &= 4m^2(c^2+d^2+2cd(\cos(\theta)\cos(\phi-\theta)-\sin(\theta)\sin(\phi-\theta))) \\ &= 4m^2(c^2+d^2+2cd\cos{\phi})\\ &= 4m^2(2c^2+2d^2-n^2) \end{align*}

Define $p=a^2+b^2$ and $q=c^2+d^2$:

\begin{align*} (p-q-2m^2)^2 &= 4m^2(2q-n^2) \\ p^2+q^2+4m^4-4m^2p+4m^2q-2pq &= 8m^2q-4m^2n^2 \\ p^2+q^2+4m^4-4m^2p-4m^2q-2pq &= -4m^2n^2 \\ p^2-2pq+q^2-4m^2(p+q) &= -4m^2(m^2+n^2) \\ \frac{(p-q)^2}{m^2} &= p+q-m^2-n^2\geq 0 \\ a^2+b^2+c^2+d^2 &\geq m^2+n^2 \\ \end{align*}

Solution 2

Let

$\begin{align*}

A &= (0,0,0) \\ B &= (1,0,0) \\ C &= (a,b,c) \\ D &= (x,y,z).

\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

It is clear that every other case can be reduced to this. Then, with the distance formula and expanding,

$\begin{align*}

AC^2 + BD^2 + AD^2 + BC^2 - AB^2 - CD^2 &= x^2-2x+1+y^2+z^2+a^2-2a+b^2+c^2+2ax+2by+2cz \\ &= (x+a-1)^2 + (y+b)^2 + (z+c)^2. \\ &\geq 0,

\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

which rearranges to the desired inequality.

See also

1975 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5
All USAMO Problems and Solutions