# Difference between revisions of "1976 AHSME Problems/Problem 27"

(→Solution) |
|||

Line 1: | Line 1: | ||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

==Solution== | ==Solution== | ||

Line 17: | Line 7: | ||

<math>\frac{\sqrt{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^2}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{(\sqrt{5}+2)+(\sqrt{5}-2)+2( | <math>\frac{\sqrt{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^2}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{(\sqrt{5}+2)+(\sqrt{5}-2)+2( | ||

\sqrt{(\sqrt{5}+2)(\sqrt{5}-2)}}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{2\sqrt5+2\sqrt{(\sqrt5)^2-2^2}}}{\sqrt{\sqrt{5}+1}} = | \sqrt{(\sqrt{5}+2)(\sqrt{5}-2)}}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{2\sqrt5+2\sqrt{(\sqrt5)^2-2^2}}}{\sqrt{\sqrt{5}+1}} = | ||

− | \frac{\sqrt{2\sqrt5+2\sqrt{1}}}{\sqrt{\sqrt5+1}}</math> | + | \frac{\sqrt{2\sqrt5+2\sqrt{1}}}{\sqrt{\sqrt5+1}} = |

+ | \frac{\sqrt{2\sqrt5+2}}{\sqrt{\sqrt5+1}} = \frac{(\sqrt{2})(\sqrt{\sqrt5+1})}{\sqrt{\sqrt5+1}} = \sqrt2</math>. | ||

+ | |||

+ | Now for the right side. | ||

+ | |||

+ | <math>\sqrt{3-2\sqrt2} = \sqrt{(1-\sqrt2)^2} = 1-\sqrt2</math> | ||

+ | |||

+ | Putting it all together gives: | ||

+ | |||

+ | <math>(\sqrt2)+(1-\sqrt2)=\boxed{(A) 1}.</math> |

## Revision as of 17:48, 20 March 2020

## Solution

We will split this problem into two parts: The fraction on the left and the square root on the right.

Starting with the fraction on the left, begin by squaring the numerator and putting a square root around it. It becomes

.

Now for the right side.

Putting it all together gives: