Difference between revisions of "1989 AHSME Problems/Problem 18"

Line 14: Line 14:
  
 
Rationalizing the denominator of <math>\frac{1}{x+\sqrt{x^2+1}}</math>, it simplifies: <math>\frac{1}{x+\sqrt{x^2+1}}</math> = <math>\frac{x-\sqrt{x^2+1}}{x^2-(x^2+1)}</math> = <math>\frac{x-\sqrt{x^2+1}}{-1}</math> = <math>-(x-\sqrt{x^2+1})</math>. Substituting this into the original equation, we get <math>x + \sqrt{x^2+1} - (-(x-\sqrt{x^2+1})) = x+\sqrt{x^2+1} + x - \sqrt{x^2+1} = 2x</math>. 2x is only rational if x is rational <math>\mathrm{(B)}</math>
 
Rationalizing the denominator of <math>\frac{1}{x+\sqrt{x^2+1}}</math>, it simplifies: <math>\frac{1}{x+\sqrt{x^2+1}}</math> = <math>\frac{x-\sqrt{x^2+1}}{x^2-(x^2+1)}</math> = <math>\frac{x-\sqrt{x^2+1}}{-1}</math> = <math>-(x-\sqrt{x^2+1})</math>. Substituting this into the original equation, we get <math>x + \sqrt{x^2+1} - (-(x-\sqrt{x^2+1})) = x+\sqrt{x^2+1} + x - \sqrt{x^2+1} = 2x</math>. 2x is only rational if x is rational <math>\mathrm{(B)}</math>
 +
{{MAA Notice}}

Revision as of 13:48, 5 July 2013

Problem

The set of all real numbers for which \[x+\sqrt{x^2+1}-\frac{1}{x+\sqrt{x^2+1}}\] is a rational number is the set of all

(A) integers $x$ (B) rational $x$ (C) real $x$

(D) $x$ for which $\sqrt{x^2+1}$ is rational

(E) $x$ for which $x+\sqrt{x^2+1}$ is rational

Solution

Rationalizing the denominator of $\frac{1}{x+\sqrt{x^2+1}}$, it simplifies: $\frac{1}{x+\sqrt{x^2+1}}$ = $\frac{x-\sqrt{x^2+1}}{x^2-(x^2+1)}$ = $\frac{x-\sqrt{x^2+1}}{-1}$ = $-(x-\sqrt{x^2+1})$. Substituting this into the original equation, we get $x + \sqrt{x^2+1} - (-(x-\sqrt{x^2+1})) = x+\sqrt{x^2+1} + x - \sqrt{x^2+1} = 2x$. 2x is only rational if x is rational $\mathrm{(B)}$ The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png