Difference between revisions of "1989 AIME Problems/Problem 10"

m (oops.. entered the text of the correct problem)
Line 4: Line 4:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
We can draw the altitude h to c, to get two right triangles.
 +
 
 +
<math>\cot{\alpha}+\cot{\beta}=\frac{c}{h}</math>, from the definition of the cotangent.
 +
 
 +
From the definition of area, <math>h=\frac{2A}{c}</math>, so therefore <math>\cot{\alpha}+\cot{\beta}=\frac{c^2}{2A}</math>
 +
 
 +
Now we evaluate the numerator:
 +
 
 +
<math>\cot{\gamma}=\frac{\cos{\gamma}}{\sin{\gamma}}</math>.
 +
 
 +
<math>\cos{\gamma}=\frac{1988c^2}{2ab}</math>, from the [[Law of Cosines]]
 +
 
 +
<math>\sin{\gamma}=\frac{c}{2R}</math>, where R is the circumradius.
 +
 
 +
<math>\cot{\gamma}=\frac{1988cR}{ab}</math>
 +
 
 +
Since <math>R=\frac{abc}{4A}</math>, <math>\cot{\gamma}=\frac{1988c^2}{4A}</math>
 +
 
 +
<math>\frac{\cot \gamma}{\cot \alpha+\cot \beta}=\frac{\frac{1988c^2}{4A}}{\frac{c^2}{2A}}=\frac{1988}{2}=994</math>
 +
 
  
 
== See also ==
 
== See also ==

Revision as of 19:57, 11 November 2007

Problem

Let $a_{}^{}$, $b_{}^{}$, $c_{}^{}$ be the three sides of a triangle, and let $\alpha_{}^{}$, $\beta_{}^{}$, $\gamma_{}^{}$, be the angles opposite them. If $a^2+b^2=1989^{}_{}c^2$, find

$\frac{\cot \gamma}{\cot \alpha+\cot \beta}$

Solution

We can draw the altitude h to c, to get two right triangles.

$\cot{\alpha}+\cot{\beta}=\frac{c}{h}$, from the definition of the cotangent.

From the definition of area, $h=\frac{2A}{c}$, so therefore $\cot{\alpha}+\cot{\beta}=\frac{c^2}{2A}$

Now we evaluate the numerator:

$\cot{\gamma}=\frac{\cos{\gamma}}{\sin{\gamma}}$.

$\cos{\gamma}=\frac{1988c^2}{2ab}$, from the Law of Cosines

$\sin{\gamma}=\frac{c}{2R}$, where R is the circumradius.

$\cot{\gamma}=\frac{1988cR}{ab}$

Since $R=\frac{abc}{4A}$, $\cot{\gamma}=\frac{1988c^2}{4A}$

$\frac{\cot \gamma}{\cot \alpha+\cot \beta}=\frac{\frac{1988c^2}{4A}}{\frac{c^2}{2A}}=\frac{1988}{2}=994$


See also