1991 OIM Problems/Problem 3

Revision as of 18:12, 13 December 2023 by Tomasdiaz (talk | contribs)

Problem

Let $f$ be an increasing function defined for every real number $x$, $0 \le x \le 1$, such that:

a. $f(0) = 0$

b. $f(x/3) = f(x)/2$

c. $f(1-x) = 1 - f(x)$

Find $f(18/1991)$

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Solution

From condition c: $f(1)=1$

From property c: $f(1/2)=f(1-1/2)=1-f(1/2)$ which means that $f(1/2)=1/2$

From property b: $f(1/3) = f(1)/2=1/2$

From property c: $f(2/3) = 1-f(1/3)=1-1/2=1/2$

Here is good to note the different between an increasing function an a strictly increasing function. In a strictly increasing function the function needs to be strictly increasing on all intervals. However, in an increasing function an interval that has the same constant value is allowed. In other words, it will not decrease in that interval.

Therefore, since in the interval $1/3 \le x \le 2/3$ the function can neither increase nor decrease and $f(1/3)=f(2/3)=1/2$, then in the interval $1/3 \le x \le 2/3$, $f(x)=1/2$

From property b: $f(1/9)=\frac{f(1/3)}{2}=1/4$ and $f(2/9)=\frac{f(2/3)}{2}=1/4$

From property c: $f(8/9)=1-f(1/9)=1-1/4=3/4$ and $f(7/9)=1-f(2/9)=1-1/4=3/4$

From property b: $f(7/3^3)=\frac{f(7/3^2)}{2}=3/8$ and $f(8/3^3)=\frac{f(8/3^2)}{2}=3/8$

From property c: $f(19/3^3)=1-f(8/3^2)=1-3/8=5/2^3$ and $f(20/3^3)=1-f(7/3^2)=1-3/8=5/2^3$

From property b: $f(19/3^4)=\frac{f(19/3^3)}{2}=5/2^4$ and $f(20/3^4)=\frac{f(20/3^3)}{2}=5/2^4$

~Tomas Diaz. orders@tomasdiaz.com

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See also

https://www.oma.org.ar/enunciados/ibe6.htm