1997 USAMO Problems/Problem 4

Revision as of 09:37, 1 July 2011 by Mcqueen (talk | contribs) (Created page with "== Problem == To ''clip'' a convex <math>n</math>-gon means to choose a pair of consecutive sides <math>AB, BC</math> and to replace them by three segments <math>AM, MN,</math> a...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

To clip a convex $n$-gon means to choose a pair of consecutive sides $AB, BC$ and to replace them by three segments $AM, MN,$ and $NC,$ where $M$ is the midpoint of $AB$ and $N$ is the midpoint of $BC$. In other words, one cuts off the triangle $MBN$ to obtain a convex $(n+1)$-gon. A regular hexagon $P_6$ of area $1$ is clipped to obtain a heptagon $P_7$. Then $P_7$ is clipped (in one of the seven possible ways) to obtain an octagon $P_8$, and so on. Prove that no matter how the clippings are done, the area of $P_n$ is greater than $\frac{1}{3}$, for all $n\ge6$.

Solution