Difference between revisions of "1998 USAMO Problems/Problem 1"

m (fixed latex)
m (See Also)
Line 11: Line 11:
  
 
==See Also==
 
==See Also==
{{USAMO newbox|year=1998|before=First Problem|num-a=2}}
+
{{USAMO newbox|year=1998|before=First Question|num-a=2}}
  
 
[[Category:Olympiad Number Theory Problems]]
 
[[Category:Olympiad Number Theory Problems]]

Revision as of 09:03, 13 September 2012

Problem

Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1\leq i\leq 999$) so that for all $i$, $|a_i-b_i|$ equals $1$ or $6$. Prove that the sum \[|a_1-b_1|+|a_2-b_2|+\cdots +|a_{999}-b_{999}|\] ends in the digit $9$.

Solution

If $S=|a_1-b_1|+|a_2-b_2|+\cdots +|a_{999}-b_{999}|$, then $S \equiv 1+1+\cdots + 1 \equiv 999 \equiv 4 \bmod{5}$.

For integers M, N we have $|M-N| \equiv M-N \equiv M+N \bmod{2}$.

So we also have $S \equiv a_1+b_1+a_2-b_2+\cdots +a_{999}+b_{999} \equiv 1+2+ \cdots +1998 \equiv 999*1999 \equiv 1 \bmod{2}$ also, so $S \equiv 9\bmod{10}$.

See Also

1998 USAMO (ProblemsResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6
All USAMO Problems and Solutions
Invalid username
Login to AoPS