Difference between revisions of "1998 USAMO Problems/Problem 1"

m
Line 4: Line 4:
 
== Solution ==
 
== Solution ==
 
{{solution}}
 
{{solution}}
 +
 +
If <math>S=|a_1-b_1|+|a_2-b_2|+\cdots +|a_{999}-b_{999}|</math>, then <math>S \equiv 1+1+\cdots + 1 \equiv 99 \equiv 4 (mod 5)</math>.
 +
 +
For integers M, N we have <math>|M-N| \equiv M-N \equiv M+N (mod 2)</math>.
 +
 
 +
So we also have <math>S \equiv a_1+b_1+a_2-b_2+\cdots +a_{999}+b_{999} \equiv 1+2+ \cdots +1998 \equiv 999*1999 \equiv 1 (mod 2)</math> also, so <math>S \equiv 9 (mod 10)</math>.

Revision as of 10:40, 6 June 2011

Problem

Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1\leq i\leq 999$) so that for all $i$, $|a_i-b_i|$ equals $1$ or $6$. Prove that the sum \[|a_1-b_1|+|a_2-b_2|+\cdots +|a_{999}-b_{999}|\] ends in the digit $9$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

If $S=|a_1-b_1|+|a_2-b_2|+\cdots +|a_{999}-b_{999}|$, then $S \equiv 1+1+\cdots + 1 \equiv 99 \equiv 4 (mod 5)$.

For integers M, N we have $|M-N| \equiv M-N \equiv M+N (mod 2)$.

So we also have $S \equiv a_1+b_1+a_2-b_2+\cdots +a_{999}+b_{999} \equiv 1+2+ \cdots +1998 \equiv 999*1999 \equiv 1 (mod 2)$ also, so $S \equiv 9 (mod 10)$.

Invalid username
Login to AoPS