1999 JBMO Problems/Problem 4

Revision as of 16:00, 17 December 2018 by Mathlete2017 (talk | contribs) (Fix LaTeX)

Problem 4

Let $ABC$ be a triangle with $AB=AC$. Also, let $D\in[BC]$ be a point such that $BC>BD>DC>0$, and let $\mathcal{C}_1,\mathcal{C}_2$ be the circumcircles of the triangles $ABD$ and $ADC$ respectively. Let $BB'$ and $CC'$ be diameters in the two circles, and let $M$ be the midpoint of $B'C'$. Prove that the area of the triangle $MBC$ is constant (i.e. it does not depend on the choice of the point $D$).


Solution

Its easy to see that $B'$, $C'$, $D$ are collinear (since angle $B'DB$ = $C'DC$ = $90^o$).

Applying Sine rule in triangle $ABC$, we get: $\sin(BAD) / \sin(CAD) = BD / DC$

Since $BAB'D$ and $CC'AD$ are cyclic quadrilaterals, $\angle BAD \angle BB'D$ and $\angle CAD = \angle CC'D.$

So, $\frac{\sin(BB'D)}{\sin(CC'D)} = \frac{BD}{DC}.$

So $\frac{BD}{\sin BB'D} = \frac{DC }{ \sin CC'D}.$ Thus, $BB' = CC'$ (the circumcircles $\mathcal{C}_1,\mathcal{C}_2$ are congruent).


From right triangles $BB'A$ and $CC'A$, we have \[AC'^{2} = CC'^{2} - AC^{2} = BB'^{2} - AB^{2} = AB'^{2}\] So $AC' = AB'.$

Since $M$ is the midpoint of $B'C'$, $AM$ is perpendicular to $B'C'$ and hence $AM$ is parallel to $BC$.

So area of $[MBC] = [ABC]$ and hence is independent of position of $D$ on $BC$.