Difference between revisions of "2001 JBMO Problems/Problem 1"

(Solution to Problem 1 — mods are a game changer)
 
(Completely FIXED the solution)
Line 5: Line 5:
 
==Solution==
 
==Solution==
  
Note that for all positive integers <math>n,</math> the value <math>n^3</math> is congruent to <math>-1,0,1</math> [[modulo]] <math>9.</math>  Since <math>2001 \equiv 3 \pmod{9},</math> we find that <math>a,b,c \equiv 1 \pmod{9}.</math>
+
Note that for all positive integers <math>n,</math> the value <math>n^3</math> is congruent to <math>-1,0,1</math> [[modulo]] <math>9.</math>  Since <math>2001 \equiv 3 \pmod{9},</math> we find that <math>a^3,b^3,c^3 \equiv 1 \pmod{9}.</math> Thus, <math>a,b,c \equiv 1 \pmod{3},</math> and the only numbers congruent to <math>1</math> modulo <math>3</math> are <math>1,4,7,10.</math>
  
 
<br>
 
<br>
The only numbers congruent to <math>1</math> modulo <math>9</math> that are also less than <math>2001</math> are <math>10</math> and <math>1.</math>  With some quick checking, we find that the only solutions are <math>\boxed{(10,10,1),(10,1,10),(1,10,10)}.</math>
+
[[WLOG]], let <math>a \ge b \ge c.</math> That means <math>a^3 \ge b^3, c^3</math> and <math>3a^3 \ge 2001.</math> Thus, <math>a^3 \ge 667,</math> so <math>a = 10.</math>
 +
 
 +
<br>
 +
Now <math>b^3 + c^3 = 1001.</math>  Since <math>b^3 \ge c^3,</math> we find that <math>2b^3 \ge 1001.</math>  Thus, <math>b = 10</math> and <math>c = 1.</math>
 +
 
 +
<br>
 +
In summary, the only solutions are <math>\boxed{(10,10,1),(10,1,10),(1,10,10)}.</math>
  
 
==See Also==
 
==See Also==

Revision as of 21:47, 11 August 2018

Problem

Solve the equation $a^3 + b^3 + c^3 = 2001$ in positive integers.

Solution

Note that for all positive integers $n,$ the value $n^3$ is congruent to $-1,0,1$ modulo $9.$ Since $2001 \equiv 3 \pmod{9},$ we find that $a^3,b^3,c^3 \equiv 1 \pmod{9}.$ Thus, $a,b,c \equiv 1 \pmod{3},$ and the only numbers congruent to $1$ modulo $3$ are $1,4,7,10.$


WLOG, let $a \ge b \ge c.$ That means $a^3 \ge b^3, c^3$ and $3a^3 \ge 2001.$ Thus, $a^3 \ge 667,$ so $a = 10.$


Now $b^3 + c^3 = 1001.$ Since $b^3 \ge c^3,$ we find that $2b^3 \ge 1001.$ Thus, $b = 10$ and $c = 1.$


In summary, the only solutions are $\boxed{(10,10,1),(10,1,10),(1,10,10)}.$

See Also

2001 JBMO (ProblemsResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4
All JBMO Problems and Solutions
Invalid username
Login to AoPS