Difference between revisions of "2002 AMC 12P Problems/Problem 11"

m (Solution)
m (Solution)
 
(6 intermediate revisions by the same user not shown)
Line 16: Line 16:
 
</math>
 
</math>
  
== Solution ==
+
== Solution 1 ==
 
We may write <math>\frac{1}{t_n}</math> as <math>\frac{2}{n(n+1)}</math> and do a partial fraction decomposition.
 
We may write <math>\frac{1}{t_n}</math> as <math>\frac{2}{n(n+1)}</math> and do a partial fraction decomposition.
Assume <math>\frac{2}{n(n+1)} = \frac{A_1}{n} + \frac{A_2}{n+1}</math>. Multiplying both sides by  
+
Assume <math>\frac{2}{n(n+1)} = \frac{A_1}{n} + \frac{A_2}{n+1}</math>.  
<math>n(n+1)</math> gives <math>2 = A_1(n+1) + A_2(n) = (A_1 + A_2)n + A_1</math>.
+
 
 +
Multiplying both sides by <math>n(n+1)</math> gives <math>2 = A_1(n+1) + A_2(n) = (A_1 + A_2)n + A_1</math>.
  
 
Equating coefficients gives <math>A_1 = 2</math> and <math>A_1 + A_2 = 0</math>, so <math>A_2 = -2</math>. Therefore, <math>\frac{2}{n(n+1)} = \frac{2}{n} - \frac{2}{n+1}</math>.
 
Equating coefficients gives <math>A_1 = 2</math> and <math>A_1 + A_2 = 0</math>, so <math>A_2 = -2</math>. Therefore, <math>\frac{2}{n(n+1)} = \frac{2}{n} - \frac{2}{n+1}</math>.
Now <math>\frac{1}{t_1} + \frac{1}{t_2} + ... + \frac{1}{t_{2002}} = 2((\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + ... + (\frac{1}{2002} - \frac{1}{2003})) = 2(1 - \frac{1}{2003}) = \text{(C) }\frac {4004}{2003}</math>.
+
 
 +
Now <math>\frac{1}{t_1} + \frac{1}{t_2} + ... + \frac{1}{t_{2002}} = 2((\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + ... + (\frac{1}{2002} - \frac{1}{2003})) = 2(1 - \frac{1}{2003}) = \boxed{\frac {4004}{2003} \text{(C) }}</math>.
 +
 
 +
Note: For the sake of completeness, I put the full derivation of the partial fraction decomposition of <math>\frac{2}{n(n+1)}</math> here. However, on the contest, the decomposition step would be much faster since it is so well-known.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=10|num-a=12}}
 
{{AMC12 box|year=2002|ab=P|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 15:18, 10 March 2024

Problem

Let $t_n = \frac{n(n+1)}{2}$ be the $n$th triangular number. Find

\[\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + ... + \frac{1}{t_{2002}}\]

$\text{(A) }\frac {4003}{2003} \qquad \text{(B) }\frac {2001}{1001} \qquad \text{(C) }\frac {4004}{2003} \qquad \text{(D) }\frac {4001}{2001} \qquad \text{(E) }2$

Solution 1

We may write $\frac{1}{t_n}$ as $\frac{2}{n(n+1)}$ and do a partial fraction decomposition. Assume $\frac{2}{n(n+1)} = \frac{A_1}{n} + \frac{A_2}{n+1}$.

Multiplying both sides by $n(n+1)$ gives $2 = A_1(n+1) + A_2(n) = (A_1 + A_2)n + A_1$.

Equating coefficients gives $A_1 = 2$ and $A_1 + A_2 = 0$, so $A_2 = -2$. Therefore, $\frac{2}{n(n+1)} = \frac{2}{n} - \frac{2}{n+1}$.

Now $\frac{1}{t_1} + \frac{1}{t_2} + ... + \frac{1}{t_{2002}} = 2((\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + ... + (\frac{1}{2002} - \frac{1}{2003})) = 2(1 - \frac{1}{2003}) = \boxed{\frac {4004}{2003} \text{(C) }}$.

Note: For the sake of completeness, I put the full derivation of the partial fraction decomposition of $\frac{2}{n(n+1)}$ here. However, on the contest, the decomposition step would be much faster since it is so well-known.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png