Difference between revisions of "2002 AMC 12P Problems/Problem 12"

(Problem)
m (Solution)
Line 15: Line 15:
  
 
== Solution ==
 
== Solution ==
If <math>\log_{b} 729 = n</math>, then <math>b^n = 729</math>. Since <math>729 = 3^6</math>, <math>b</math> must be <math>3</math> to some [[factor]] of 6. Thus, there are four (3, 9, 27, 729) possible values of <math>b \Longrightarrow \boxed{\mathrm{E}}</math>.
 
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=11|num-a=13}}
 
{{AMC12 box|year=2002|ab=P|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 14:56, 10 March 2024

Problem

For how many positive integers $n$ is $n^3 - 8n^2 + 20n - 13$ a prime number?

$\text{(A) one} \qquad \text{(B) two} \qquad \text{(C) three} \qquad \text{(D) four} \qquad \text{(E) more than four}$

Solution

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png