Difference between revisions of "2002 AMC 12P Problems/Problem 12"

m (Solution)
m (Solution)
Line 17: Line 17:
 
Since this is a number theory question, it is clear that the main challenge here is factoring the given cubic. In general, the rational root theorem will be very useful for these situations.  
 
Since this is a number theory question, it is clear that the main challenge here is factoring the given cubic. In general, the rational root theorem will be very useful for these situations.  
  
The rational root theorem states that all rational roots of <math>n^3 - 8n^2 + 20n - 13</math> will be among <math>1, 13, -1, -13</math>.
+
The rational root theorem states that all rational roots of <math>n^3 - 8n^2 + 20n - 13</math> will be among <math>1, 13, -1</math>, and <math>-13</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=11|num-a=13}}
 
{{AMC12 box|year=2002|ab=P|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:01, 10 March 2024

Problem

For how many positive integers $n$ is $n^3 - 8n^2 + 20n - 13$ a prime number?

$\text{(A) one} \qquad \text{(B) two} \qquad \text{(C) three} \qquad \text{(D) four} \qquad \text{(E) more than four}$

Solution

Since this is a number theory question, it is clear that the main challenge here is factoring the given cubic. In general, the rational root theorem will be very useful for these situations.

The rational root theorem states that all rational roots of $n^3 - 8n^2 + 20n - 13$ will be among $1, 13, -1$, and $-13$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png