Difference between revisions of "2002 AMC 12P Problems/Problem 14"

m (Solution)
m (Solution)
Line 24: Line 24:
 
The negative imaginary terms have exponents on <math>i</math> that are of the form <math>4k + 3</math> for integers <math>k</math>. Therefore, the negative real part evaluates to <cmath>-(3 + 7 + ... + 1999)i</cmath>
 
The negative imaginary terms have exponents on <math>i</math> that are of the form <math>4k + 3</math> for integers <math>k</math>. Therefore, the negative real part evaluates to <cmath>-(3 + 7 + ... + 1999)i</cmath>
  
Putting everything together, we have
+
Putting everything together, we have <math>i + 2i^2 + ... + 2002i^{2002} = (-2+4-6+8- ... +2000-2002) + (1-3+5-7+ ... -1999+2001)i</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=13|num-a=15}}
 
{{AMC12 box|year=2002|ab=P|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 19:30, 10 March 2024

Problem

Find $i + 2i^2 +3i^3 + ... + 2002i^{2002}.$

$\text{(A) }-999 + 1002i \qquad \text{(B) }-1002 + 999i \qquad \text{(C) }-1001 + 1000i \qquad \text{(D) }-1002 + 1001i \qquad \text{(E) }i$

Solution

Note that $i^4 = 1$, so $i^n = i^{4m+n}$ for all integers $m$ and $n$. In particular, $i = 1$, $i^2 = -1$, and $i^3 = -i$. We group the positive and negative real terms together and group the positive and negative imaginary parts together.

The positive real terms have exponents on $i$ that are multiples of 4. Therefore, the positive real part evaluates to \[4 + 8 + ... + 2000\] The negative real terms have exponents on $i$ that are of the form $4k + 2$ for integers $k$. Therefore, the negative real part evaluates to \[-(2 + 6 + ... + 2002)\] The positive imaginary terms have exponents on $i$ that are of the form $4k + 1$ for integers $k$. Therefore, the negative real part evaluates to \[(1 + 5 + ... + 2001)i\] The negative imaginary terms have exponents on $i$ that are of the form $4k + 3$ for integers $k$. Therefore, the negative real part evaluates to \[-(3 + 7 + ... + 1999)i\]

Putting everything together, we have $i + 2i^2 + ... + 2002i^{2002} = (-2+4-6+8- ... +2000-2002) + (1-3+5-7+ ... -1999+2001)i$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png