Difference between revisions of "2002 AMC 12P Problems/Problem 14"

(Solution)
m (Solution)
Line 24: Line 24:
 
The negative imaginary terms have exponents on <math>i</math> that are of the form <math>4k + 3</math> for integers <math>k</math>. Therefore, the negative real part evaluates to <cmath>-(3 + 7 + ... + 1999)i</cmath>
 
The negative imaginary terms have exponents on <math>i</math> that are of the form <math>4k + 3</math> for integers <math>k</math>. Therefore, the negative real part evaluates to <cmath>-(3 + 7 + ... + 1999)i</cmath>
  
Putting everything together, we have <math>i + 2i^2 + ... + 2002i^{2002} = (-2+4-6+8- ... +2000-2002) + (1-3+5-7+ ... -1999+2001)i</math>.
+
Putting everything together, we have <math>i + 2i^2 + ... + 2002i^{2002} = (-2 + 4 - 6 + 8 - ... + 2000 - 2002) + (1 - 3 + 5 - 7 + ... - 1999 + 2001)i</math>.
  
Group every 2 consecutive terms as shown below <cmath>((-2+4)+(-6+8)+ ... +(-1998+2000)-2002) + ((1-3)+(5-7)+ ... +(1997-1999)+2001)i</cmath>
+
Group every 2 consecutive terms as shown below <cmath>((-2 + 4)+(-6 + 8) + ... + (-1998 + 2000)-2002) + ((1 - 3)+(5 - 7) + ... + (1997 - 1999) + 2001)i</cmath>
  
 
Now we evaluate each small bracket with 2 terms. We get <math>500(2) = 1000</math> in the real part and <math>500(-2) = -1000</math> in the imaginary part. Therefore, the sum becomes <math>(1000 - 2002) + (-1000 + 2001)i = \boxed {\text{(D) }-1002 + 1001i}</math>.
 
Now we evaluate each small bracket with 2 terms. We get <math>500(2) = 1000</math> in the real part and <math>500(-2) = -1000</math> in the imaginary part. Therefore, the sum becomes <math>(1000 - 2002) + (-1000 + 2001)i = \boxed {\text{(D) }-1002 + 1001i}</math>.

Revision as of 19:42, 10 March 2024

Problem

Find $i + 2i^2 +3i^3 + ... + 2002i^{2002}.$

$\text{(A) }-999 + 1002i \qquad \text{(B) }-1002 + 999i \qquad \text{(C) }-1001 + 1000i \qquad \text{(D) }-1002 + 1001i \qquad \text{(E) }i$

Solution

Note that $i^4 = 1$, so $i^n = i^{4m+n}$ for all integers $m$ and $n$. In particular, $i = 1$, $i^2 = -1$, and $i^3 = -i$. We group the positive and negative real terms together and group the positive and negative imaginary parts together.

The positive real terms have exponents on $i$ that are multiples of 4. Therefore, the positive real part evaluates to \[4 + 8 + ... + 2000\] The negative real terms have exponents on $i$ that are of the form $4k + 2$ for integers $k$. Therefore, the negative real part evaluates to \[-(2 + 6 + ... + 2002)\] The positive imaginary terms have exponents on $i$ that are of the form $4k + 1$ for integers $k$. Therefore, the negative real part evaluates to \[(1 + 5 + ... + 2001)i\] The negative imaginary terms have exponents on $i$ that are of the form $4k + 3$ for integers $k$. Therefore, the negative real part evaluates to \[-(3 + 7 + ... + 1999)i\]

Putting everything together, we have $i + 2i^2 + ... + 2002i^{2002} = (-2 + 4 - 6 + 8 - ... + 2000 - 2002) + (1 - 3 + 5 - 7 + ... - 1999 + 2001)i$.

Group every 2 consecutive terms as shown below \[((-2 + 4)+(-6 + 8) + ... + (-1998 + 2000)-2002) + ((1 - 3)+(5 - 7) + ... + (1997 - 1999) + 2001)i\]

Now we evaluate each small bracket with 2 terms. We get $500(2) = 1000$ in the real part and $500(-2) = -1000$ in the imaginary part. Therefore, the sum becomes $(1000 - 2002) + (-1000 + 2001)i = \boxed {\text{(D) }-1002 + 1001i}$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png