Difference between revisions of "2002 AMC 12P Problems/Problem 20"

(See also)
m (Solution)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
How many positive [[integer]]s <math>b</math> have the property that <math>\log_{b} 729</math> is a positive integer?
+
Let <math>f</math> be a real-valued function such that
  
<math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ 4 } </math>
+
<cmath>f(x) + 2f(\frac{2002}{x}) = 3x</cmath>
 +
 
 +
for all <math>x>0.</math> Find <math>f(2).</math>
 +
 
 +
<math>
 +
\text{(A) }1000
 +
\qquad
 +
\text{(B) }2000
 +
\qquad
 +
\text{(C) }3000
 +
\qquad
 +
\text{(D) }4000
 +
\qquad
 +
\text{(E) }6000
 +
</math>
  
 
== Solution ==
 
== Solution ==
If <math>\log_{b} 729 = n</math>, then <math>b^n = 729</math>. Since <math>729 = 3^6</math>, <math>b</math> must be <math>3</math> to some [[factor]] of 6. Thus, there are four (3, 9, 27, 729) possible values of <math>b \Longrightarrow \boxed{\mathrm{E}}</math>.
+
Setting <math>x = 2</math> gives <math> f(2) + 2f(1001) = 6</math>.
 +
Setting <math>x = 1001</math> gives <math> 2f(2) + f(1001) = 3003</math>.
 +
 
 +
Adding these 2 equations and dividing by 3 gives
 +
<math>f(2) + f(1001) = \frac{6+3003}{3} = 1003</math>.
 +
 
 +
Subtracting these 2 equations gives
 +
<math>f(2) - f(1001) = 2997</math>.
 +
 
 +
Therefore, <math>f(2) = \frac{1003+2997}{2} = \boxed {\text{(B) }2000}</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=19|num-a=21}}
 
{{AMC12 box|year=2002|ab=P|num-b=19|num-a=21}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 12:30, 28 March 2024

Problem

Let $f$ be a real-valued function such that

\[f(x) + 2f(\frac{2002}{x}) = 3x\]

for all $x>0.$ Find $f(2).$

$\text{(A) }1000 \qquad \text{(B) }2000 \qquad \text{(C) }3000 \qquad \text{(D) }4000 \qquad \text{(E) }6000$

Solution

Setting $x = 2$ gives $f(2) + 2f(1001) = 6$. Setting $x = 1001$ gives $2f(2) + f(1001) = 3003$.

Adding these 2 equations and dividing by 3 gives $f(2) + f(1001) = \frac{6+3003}{3} = 1003$.

Subtracting these 2 equations gives $f(2) - f(1001) = 2997$.

Therefore, $f(2) = \frac{1003+2997}{2} = \boxed {\text{(B) }2000}$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png