Difference between revisions of "2002 AMC 12P Problems/Problem 20"

(Problem)
(Solution)
Line 19: Line 19:
  
 
== Solution ==
 
== Solution ==
If <math>\log_{b} 729 = n</math>, then <math>b^n = 729</math>. Since <math>729 = 3^6</math>, <math>b</math> must be <math>3</math> to some [[factor]] of 6. Thus, there are four (3, 9, 27, 729) possible values of <math>b \Longrightarrow \boxed{\mathrm{E}}</math>.
+
When <math>x = 2</math>, then we get <math> f(2) + 2f(1001) = 6</math>; we can also substitute <math>x</math> as <math>1001</math>, then we will get <math>f(1001) + 2f(2) =3003</math>. Solve this system of equations, then we get <math>f(2)= 2000</math> <math>\Longrightarrow \boxed{\mathrm{B}}</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=19|num-a=21}}
 
{{AMC12 box|year=2002|ab=P|num-b=19|num-a=21}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:55, 17 January 2024

Problem

Let $f$ be a real-valued function such that

\[f(x) + 2f(\frac{2002}{x}) = 3x\]

for all $x>0.$ Find $f(2).$

$\text{(A) }1000 \qquad \text{(B) }2000 \qquad \text{(C) }3000 \qquad \text{(D) }4000 \qquad \text{(E) }6000$

Solution

When $x = 2$, then we get $f(2) + 2f(1001) = 6$; we can also substitute $x$ as $1001$, then we will get $f(1001) + 2f(2) =3003$. Solve this system of equations, then we get $f(2)= 2000$ $\Longrightarrow \boxed{\mathrm{B}}$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png