Difference between revisions of "2002 AMC 12P Problems/Problem 24"

(See also)
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
How many positive [[integer]]s <math>b</math> have the property that <math>\log_{b} 729</math> is a positive integer?
+
Let <math>ABCD</math> be a regular tetrahedron and Let <math>E</math> be a point inside the face <math>ABC.</math> Denote by <math>s</math> the sum of the distances from <math>E</math> to the faces <math>DAB, DBC, DCA,</math> and by <math>S</math> the sum of the distances from <math>E</math> to the edges <math>AB, BC, CA.</math> Then <math>\frac{s}{S}</math> equals
  
<math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ 4 } </math>
+
<math>
 +
\text{(A) }\sqrt{2}
 +
\qquad
 +
\text{(B) }\frac{2 \sqrt{2}}{3}
 +
\qquad
 +
\text{(C) }\frac{\sqrt{6}}{2}
 +
\qquad
 +
\text{(D) }2
 +
\qquad
 +
\text{(E) }3
 +
</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 01:05, 30 December 2023

Problem

Let $ABCD$ be a regular tetrahedron and Let $E$ be a point inside the face $ABC.$ Denote by $s$ the sum of the distances from $E$ to the faces $DAB, DBC, DCA,$ and by $S$ the sum of the distances from $E$ to the edges $AB, BC, CA.$ Then $\frac{s}{S}$ equals

$\text{(A) }\sqrt{2} \qquad \text{(B) }\frac{2 \sqrt{2}}{3} \qquad \text{(C) }\frac{\sqrt{6}}{2} \qquad \text{(D) }2 \qquad \text{(E) }3$

Solution

If $\log_{b} 729 = n$, then $b^n = 729$. Since $729 = 3^6$, $b$ must be $3$ to some factor of 6. Thus, there are four (3, 9, 27, 729) possible values of $b \Longrightarrow \boxed{\mathrm{E}}$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png