# 2002 AMC 8 Problems/Problem 22

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Six cubes, each an inch on an edge, are fastened together, as shown. Find the total surface area in square inches. Include the top, bottom, and sides. $[asy] /* AMC8 2002 #22 Problem */ draw((0,0)--(0,1)--(1,1)--(1,0)--cycle); draw((0,1)--(0.5,1.5)--(1.5,1.5)--(1,1)); draw((1,0)--(1.5,0.5)--(1.5,1.5)); draw((0.5,1.5)--(1,2)--(1.5,2)); draw((1.5,1.5)--(1.5,3.5)--(2,4)--(3,4)--(2.5,3.5)--(2.5,0.5)--(1.5,.5)); draw((1.5,3.5)--(2.5,3.5)); draw((1.5,1.5)--(3.5,1.5)--(3.5,2.5)--(1.5,2.5)); draw((3,4)--(3,3)--(2.5,2.5)); draw((3,3)--(4,3)--(4,2)--(3.5,1.5)); draw((4,3)--(3.5,2.5)); draw((2.5,.5)--(3,1)--(3,1.5));[/asy]$ $\textbf{(A)}\ 18\qquad\textbf{(B)}\ 24\qquad\textbf{(C)}\ 26\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 36$

## Solution

Count the number of sides that are not exposed, where a cube is connected to another cube and subtract it from the total number of faces. There are $5$ places with two adjacent cubes, covering $10$ sides, and $(6)(6)=36$ faces. The exposed surface area is $36-10 = \boxed{\text{(C)}\ 26}$.

## See Also

 2002 AMC 8 (Problems • Answer Key • Resources) Preceded byProblem 21 Followed byProblem 23 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS