Difference between revisions of "2003 AIME II Problems/Problem 15"

 
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
In <math> \triangle ABC, AB = 360, BC = 507, </math> and <math> CA = 780. </math> Let <math> M be the midpoint of <math> \overline{CA}, </math> and let <math> D </math> be the point on <math> \overline{CA} </math> such that <math> \overline{BD} </math> bisects angle <math> ABC. </math> Let <math> F </math> be the point on <math> \overline{BC} </math> such that <math> \overline{DF} \perp \overline{BD}. </math> Suppose that <math> \overline{DF} </math> meets <math> \overline{BM} </math> at <math> E. </math> The ratio <math> DE: EF </math> can be written in the form <math> m/n, </math> where <math> m </math> and <math> n </math> are relatively prime positive integers. Find <math> m + n. </math>
  
 
== Solution ==
 
== Solution ==

Revision as of 19:04, 9 July 2006

Problem

In $\triangle ABC, AB = 360, BC = 507,$ and $CA = 780.$ Let $M be the midpoint of <math> \overline{CA},$ and let $D$ be the point on $\overline{CA}$ such that $\overline{BD}$ bisects angle $ABC.$ Let $F$ be the point on $\overline{BC}$ such that $\overline{DF} \perp \overline{BD}.$ Suppose that $\overline{DF}$ meets $\overline{BM}$ at $E.$ The ratio $DE: EF$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$

Solution

See also

Invalid username
Login to AoPS