# Difference between revisions of "2003 AMC 10A Problems/Problem 22"

## Problem

In rectangle $ABCD$, we have $AB=8$, $BC=9$, $H$ is on $BC$ with $BH=6$, $E$ is on $AD$ with $DE=4$, line $EC$ intersects line $AH$ at $G$, and $F$ is on line $AD$ with $GF \perp AF$. Find the length of $GF$. $\mathrm{(A) \ } 16\qquad \mathrm{(B) \ } 20\qquad \mathrm{(C) \ } 24\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 30$

## Solution

### Solution 1 $\angle GCH = \angle ABH$ (Opposite angles are equal). $\angle F = \angle B$ (Both are 90 degrees). $\angle BHA = \angle HAD$ (Alt. Interior Angles are congruent).

Therefore $\triangle GFA$ and $\triangle ABH$ are similar. $\triangle GCH$ and $\triangle GEA$ are also similar. $DA$ is 9, therefore $EA$ must equal 5. Similarly, $CH$ must equal 3.

Because $GCH$ and $GEA$ are similar, the ratio of $CH\; =\; 3$ and $EA\; =\; 5$, must also hold true for $GH$ and $HA$. $\frac{GH}{GA} = \frac{3}{5}$, so $HA$ is $\frac{2}{5}$ of $GA$. By Pythagorean theorem, $(HA)^2\; =\; (HB)^2\; +\; (BA)^2\;...\;HA=10$. $HA\: =\: 10 =\: \frac{2}{5}*(GA)$. $GA\: =\: 25.$

So $\frac{GA}{HA}\: =\: \frac{GF}{BA}$. $\frac{25}{10}\: =\: \frac{GF}{8}$.

Therefore $GF= \boxed{\mathrm{(B)}\ 20}$.

### Solution 2

Since $ABCD$ is a rectangle, $CD=AB=8$.

Since $ABCD$ is a rectangle and $GF \perp AF$, $\angle GFE = \angle CDE = \angle ABC = 90^\circ$.

Since $ABCD$ is a rectangle, $AD || BC$.

So, $AH$ is a transversal, and $\angle GAF = \angle AHB$.

This is sufficient to prove that $GFE \approx CDE$ and $GFA \approx ABH$.

Using ratios: $\frac{GF}{FE}=\frac{CD}{DE}$ $\frac{GF}{FD+4}=\frac{8}{4}=2$ $GF=2 \cdot (FD+4)=2 \cdot FD+8$ $\frac{GF}{FA}=\frac{AB}{BH}$ $\frac{GF}{FD+9}=\frac{8}{6}=\frac{4}{3}$ $GF=\frac{4}{3} \cdot (FD+9)=\frac{4}{3} \cdot FD+12$

Since $GF$ can't have 2 different lengths, both expressions for $GF$ must be equal. $2 \cdot FD+8=\frac{4}{3} \cdot FD+12$ $\frac{2}{3} \cdot FD=4$ $FD=6$ $GF=2 \cdot FD+8=2\cdot6+8=\boxed{\mathrm{(B)}\ 20}$

### Solution 3

Since $ABCD$ is a rectangle, $CD=3$, $EA=5$, and $CD=8$. From the Pythagorean Theorem, $CE^2=CD^2+DE^2=80\Rightarrow CE=4\sqrt{5}$.

#### Lemma

Statement: $GCH \approx GEA$

Proof: $\angle CGH=\angle EGA$, obviously.

$\begin{eqnarray} \angle HCE=180^{\circ}-\angle CHG\\ \angle DCE=\angle CHG-90^{\circ}\\ \angle CEED=180-\angle CHG\\ \angle GEA=\angle GCH \end{eqnarray}$ (Error compiling LaTeX. ! Missing \endgroup inserted.)

Since two angles of the triangles are equal, the third angles must equal each other. Therefore, the triangles are similar.

Let $GC=x$. $\begin{eqnarray} \dfrac{x}{3}=\dfrac{x+4\sqrt{5}}{5}\\ 5x=3x+12\sqrt{5}\\ 2x=12\sqrt{5}\\ x=6\sqrt{5} \end{eqnarray}$

Also, $\triangle GFE\approx \triangle CDE$, therefore $$\dfrac{8}{4\sqrt{5}}=\dfrac{GF}{10\sqrt{5}}$$

We can multiply both sides by $\sqrt{5}$ to get that $GF$ is twice of 10, or $\boxed{\mathrm{(B)}\ 20}$

### Solution 4

We extend $BC$ such that it intersects $GF$ at $X$. Since $ABCD$ is a rectangle, it follows that $CD=8$, therefore, $XF=8$. Let $GX=y$. From the similarity of triangles $GCH$ and $GEA$, we have the ratio $3:5$ (as $CH=9-6=3$, and $EA=9-4=5$). $GX$ and $GF$ are the altitudes of $GCH$ and $GEA$, respectively. Thus, $y:y+8 = 3:5$, from which we have $y=12$, thus $GF=y+8=12+8=\boxed{\mathrm{(B)}\ 20}$