

(One intermediate revision by one other user not shown) 
Line 1: 
Line 1: 
−  == Problem ==
 +  #REDIRECT[[2003 AMC 12A Problems/Problem 6]] 
−  Define <math>x \heartsuit y</math> to be <math>xy</math> for all real numbers <math>x</math> and <math>y</math>. Which of the following statements is not true?
 
−   
−  <math> \mathrm{(A) \ } x \heartsuit y = y \heartsuit x </math> for all <math>x</math> and <math>y</math>
 
−   
−  <math>\mathrm{(B) \ } 2(x \heartsuit y) = (2x) \heartsuit (2y) </math> for all <math>x</math> and <math>y</math>
 
−   
−  <math>\mathrm{(C) \ } x \heartsuit 0 = x </math> for all <math>x</math>
 
−   
−  <math>\mathrm{(D) \ } x \heartsuit x = 0 </math> for all <math>x</math>
 
−   
−  <math> \mathrm{(E) \ } x \heartsuit y > 0 </math> if <math>x \neq y</math>
 
−   
−  == Solution ==
 
−  Examining statement C:
 
−   
−  <math> x \heartsuit 0 = x0 = x </math>
 
−   
−  <math>x \neq x</math> when <math>x<0</math>, but statement D says that it does for all <math>x</math>.
 
−   
−  Therefore the statement that is not true is "<math>x \heartsuit 0 = x</math> for all <math>x</math>" <math>\Rightarrow C</math>
 
−   
−  Alternatively, consider that the given "heart function" is actually the definition of the distance between two points. Examining all of the statements, only C is not necessarily true; if c is negative, the distance between <math>c</math> and <math>0</math> is the absolute value of <math>c</math>, not <math>c</math> itself, because distance is always nonnegative.
 
−   
−  == See Also ==
 
−  {{AMC10 boxyear=2003ab=Anumb=5numa=7}}
 
−   
−  [[Category:Introductory Algebra Problems]]  