Difference between revisions of "2003 IMO Problems/Problem 4"

(Created page with "==Problem== Let <math>ABCD</math> be a cyclic quadrilateral. Let <math>P</math>, <math>Q</math>, and <math>R</math> be the feet of perpendiculars from <math>D</math> to lines...")
 
 
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
{{solution}}
+
Clearly <math>PQR</math> is the Simson Line and <math>APDQ</math>, <math>BPDR</math>, <math>CQDR</math> is cyclic. By angle chasing we have <math>\triangle DPQ\sim\triangle DBC</math>, <math>\triangle DQR\sim\triangle DAB</math>. Then by <math>PQ=QR</math> we have <math>\frac{DC}{CB}=\frac{DQ}{QP}=\frac{DQ}{QR}=\frac{DA}{AB}</math>. Rearranging and using the angle bisector theorem we are done.
  
 
==See Also==
 
==See Also==
  
 
{{IMO box|year=2003|num-b=3|num-a=5}}
 
{{IMO box|year=2003|num-b=3|num-a=5}}

Latest revision as of 04:07, 26 March 2024

Problem

Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, and $R$ be the feet of perpendiculars from $D$ to lines $\overline{BC}$, $\overline{CA}$, and $\overline{AB}$, respectively. Show that $PQ=QR$ if and only if the bisectors of angles $ABC$ and $ADC$ meet on segment $\overline{AC}$.

Solution

Clearly $PQR$ is the Simson Line and $APDQ$, $BPDR$, $CQDR$ is cyclic. By angle chasing we have $\triangle DPQ\sim\triangle DBC$, $\triangle DQR\sim\triangle DAB$. Then by $PQ=QR$ we have $\frac{DC}{CB}=\frac{DQ}{QP}=\frac{DQ}{QR}=\frac{DA}{AB}$. Rearranging and using the angle bisector theorem we are done.

See Also

2003 IMO (Problems) • Resources
Preceded by
Problem 3
1 2 3 4 5 6 Followed by
Problem 5
All IMO Problems and Solutions