Difference between revisions of "2004 AMC 10A Problems/Problem 2"

(Problem)
Line 1: Line 1:
==Video Solution ==
 
https://youtu.be/KfjB4--G-Lc
 
 
Education, the Study of Everything
 
 
 
 
 
 
== Problem ==
 
== Problem ==
 
For any three real numbers <math>a</math>, <math>b</math>, and <math>c</math>, with <math>b\neq c</math>, the operation <math>\otimes</math> is defined by:
 
For any three real numbers <math>a</math>, <math>b</math>, and <math>c</math>, with <math>b\neq c</math>, the operation <math>\otimes</math> is defined by:
Line 16: Line 8:
 
== Solution ==
 
== Solution ==
 
<math>\otimes \left(\frac{1}{2-3},\frac{2}{3-1},\frac{3}{1-2}\right)=\otimes(-1,1,-3)=\frac{-1}{1+3}=-\frac{1}{4}\Longrightarrow\boxed{\mathrm{(B)}\ -\frac{1}{4}}</math>
 
<math>\otimes \left(\frac{1}{2-3},\frac{2}{3-1},\frac{3}{1-2}\right)=\otimes(-1,1,-3)=\frac{-1}{1+3}=-\frac{1}{4}\Longrightarrow\boxed{\mathrm{(B)}\ -\frac{1}{4}}</math>
 +
 +
==Video Solution ==
 +
https://youtu.be/KfjB4--G-Lc
 +
 +
Education, the Study of Everything
 +
  
 
== See also ==
 
== See also ==

Revision as of 23:52, 16 January 2021

Problem

For any three real numbers $a$, $b$, and $c$, with $b\neq c$, the operation $\otimes$ is defined by: \[\otimes(a,b,c)=\frac{a}{b-c}\] What is $\otimes(\otimes(1,2,3),\otimes(2,3,1),\otimes(3,1,2))$?

$\mathrm{(A) \ } -\frac{1}{2}\qquad \mathrm{(B) \ } -\frac{1}{4} \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac{1}{4} \qquad \mathrm{(E) \ } \frac{1}{2}$

Solution

$\otimes \left(\frac{1}{2-3},\frac{2}{3-1},\frac{3}{1-2}\right)=\otimes(-1,1,-3)=\frac{-1}{1+3}=-\frac{1}{4}\Longrightarrow\boxed{\mathrm{(B)}\ -\frac{1}{4}}$

Video Solution

https://youtu.be/KfjB4--G-Lc

Education, the Study of Everything


See also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS