Difference between revisions of "2004 AMC 10B Problems/Problem 21"

(Solution 2)
(Problem)
 
(7 intermediate revisions by 6 users not shown)
Line 4: Line 4:
  
 
<math> \mathrm{(A) \ } 3722 \qquad \mathrm{(B) \ } 3732 \qquad \mathrm{(C) \ } 3914 \qquad \mathrm{(D) \ } 3924 \qquad \mathrm{(E) \ } 4007 </math>
 
<math> \mathrm{(A) \ } 3722 \qquad \mathrm{(B) \ } 3732 \qquad \mathrm{(C) \ } 3914 \qquad \mathrm{(D) \ } 3924 \qquad \mathrm{(E) \ } 4007 </math>
==Solution==
+
 
===Solution 1===
+
==Solution 1==
 
The two sets of terms are <math>A=\{ 3k+1 : 0\leq k < 2004 \}</math> and <math>B=\{ 7l+9 : 0\leq l<2004\}</math>.  
 
The two sets of terms are <math>A=\{ 3k+1 : 0\leq k < 2004 \}</math> and <math>B=\{ 7l+9 : 0\leq l<2004\}</math>.  
  
Line 18: Line 18:
 
Thus the good values of <math>l</math> are <math>\{1,4,7,\dots,856\}</math>, and their count is <math>858/3 = 286</math>.
 
Thus the good values of <math>l</math> are <math>\{1,4,7,\dots,856\}</math>, and their count is <math>858/3 = 286</math>.
  
Therefore <math>|A\cap B|=286</math>, and thus <math>|S|=4008-|A\cap B|=\boxed{3722}</math>.
+
Therefore <math>|A\cap B|=286</math>, and thus <math>|S|=4008-|A\cap B|=\boxed{(A) 3722}</math>.
===Solution 2===
+
 
Shift down the first sequence by <math>1</math> and the second by <math>9</math> so that the two sequences become <math>0,3,6,\cdots,6009</math> and <math>0,7,14,\cdots,14028</math>. The first becomes multiples of <math>3</math> and the second becomes multiples of <math>7</math>. Their intersection is the multiples of <math>21</math> up to <math>6009</math>. There are <math>\lfloor \frac{6009}{21} \rfloor=286</math> multiples of <math>21</math>. There are <math>4008-286=\boxed{\textbf{(A)}\ 3722}</math> distinct numbers in <math>S</math>.
+
==Solution 2==
 +
We can start by finding the first non-distinct term from both sequences. We find that that number is <math>16</math>. Now, to find every
 +
 
 +
other non-distinct terms, we can just keep adding <math>21</math>. We know that the last terms of both sequences are <math>1+3\cdot 2003</math> and  
 +
 
 +
<math>9+7\cdot 2003</math>. Clearly, <math>1+3\cdot 2003</math> is smaller and that is the last possible common term of both sequences. Now, we can
 +
 
 +
create the inequality <math>16+21k \leq 1+3\cdot 2003</math>. Using the inequality, we find that there are <math>286</math> common terms. There are 4008
 +
 
 +
terms in total. <math>4008-286=\boxed{(A) 3722}</math>
  
 +
~Hithere22702
 
== See also ==
 
== See also ==
  
 
{{AMC10 box|year=2004|ab=B|num-b=20|num-a=22}}
 
{{AMC10 box|year=2004|ab=B|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Latest revision as of 23:37, 24 May 2021

Problem

Let $1$; $4$; $\ldots$ and $9$; $16$; $\ldots$ be two arithmetic progressions. The set $S$ is the union of the first $2004$ terms of each sequence. How many distinct numbers are in $S$?

$\mathrm{(A) \ } 3722 \qquad \mathrm{(B) \ } 3732 \qquad \mathrm{(C) \ } 3914 \qquad \mathrm{(D) \ } 3924 \qquad \mathrm{(E) \ } 4007$

Solution 1

The two sets of terms are $A=\{ 3k+1 : 0\leq k < 2004 \}$ and $B=\{ 7l+9 : 0\leq l<2004\}$.

Now $S=A\cup B$. We can compute $|S|=|A\cup B|=|A|+|B|-|A\cap B|=4008-|A\cap B|$. We will now find $|A\cap B|$.

Consider the numbers in $B$. We want to find out how many of them lie in $A$. In other words, we need to find out the number of valid values of $l$ for which $7l+9\in A$.

The fact "$7l+9\in A$" can be rewritten as "$1\leq 7l+9 \leq 3\cdot 2003 + 1$, and $7l+9\equiv 1\pmod 3$".

The first condition gives $0\leq l\leq 857$, the second one gives $l\equiv 1\pmod 3$.

Thus the good values of $l$ are $\{1,4,7,\dots,856\}$, and their count is $858/3 = 286$.

Therefore $|A\cap B|=286$, and thus $|S|=4008-|A\cap B|=\boxed{(A) 3722}$.

Solution 2

We can start by finding the first non-distinct term from both sequences. We find that that number is $16$. Now, to find every

other non-distinct terms, we can just keep adding $21$. We know that the last terms of both sequences are $1+3\cdot 2003$ and

$9+7\cdot 2003$. Clearly, $1+3\cdot 2003$ is smaller and that is the last possible common term of both sequences. Now, we can

create the inequality $16+21k \leq 1+3\cdot 2003$. Using the inequality, we find that there are $286$ common terms. There are 4008

terms in total. $4008-286=\boxed{(A) 3722}$

~Hithere22702

See also

2004 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS