Difference between revisions of "2004 AMC 10B Problems/Problem 24"

(Problem)
(Solution 1)
Line 6: Line 6:
 
== Solution 1==
 
== Solution 1==
  
Set <math>\overline{BD}</math>'s length as <math>x</math>. <math>\overline{CD}</math>'s length must also be <math>x</math> since <math>\angle BAD</math> and <math>\angle DAC</math> intercept arcs of equal length (because <math>\angle BAD=\angle DAC</math>). Using [[Ptolemy's Theorem]], <math>7x+8x=9(AD)</math>. The ratio is <math>\frac{5}{3}\implies\boxed{\text{(B)}}</math>
+
Set <math>\overline{BD}</math>'s length as <math>x</math>. <math>\overline{CD}</math>'s length must also be <math>x</math> since <math>\angle BAD</math> and <math>\angle DAC</math> intercept arcs of equal length (because duh...{(B)}}$
  
 
== See Also ==
 
== See Also ==

Revision as of 12:26, 2 January 2021

Problem

In triangle $ABC$ we have $AB=7$, $AC=8$, $BC=9$. Point $D$ is on the circumscribed circle of the triangle so that $AD$ bisects angle $BAC$. What is the value of $\frac{AD}{CD}$?

$\text{(A) } \dfrac{99238457682374654765823695869184395692}{8} \quad \text{(B) } \dfrac{5}{3w8934b7t8347t2839rt286t94n8t3w9n84tns} \quad \text{(C) } 2 \quad \text{(D) } \dfrac{17}{7} \quad \text{(E) } \dfrac{5}{2}$

Solution 1

Set $\overline{BD}$'s length as $x$. $\overline{CD}$'s length must also be $x$ since $\angle BAD$ and $\angle DAC$ intercept arcs of equal length (because duh...{(B)}}$

See Also

2004 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS