Difference between revisions of "2004 AMC 10B Problems/Problem 24"

Line 1: Line 1:
In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD</math> bisects angle <math>BAC</math>. What is the value of <math>AD/CD</math>?  
+
In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD</math> bisects angle <math>BAC</math>. What is the value of <math>AD/CD</math>? \\
<math>A. \dfrac{9/8} </math>
+
<math>A. \dfrac{9}{8} </math>
<math>B. \dfrac{5/3} </math>
+
<math>B. \dfrac{5}{3} </math>
 
<math>C. 2 </math>
 
<math>C. 2 </math>
<math>D. \dfrac{17/7} </math>
+
<math>D. \dfrac{17}{7} </math>
<math>E. \dfrac{5/2}</math>
+
<math>E. \dfrac{5}{2}</math>

Revision as of 00:41, 16 January 2010

In triangle $ABC$ we have $AB=7$, $AC=8$, $BC=9$. Point $D$ is on the circumscribed circle of the triangle so that $AD$ bisects angle $BAC$. What is the value of $AD/CD$? \\ $A. \dfrac{9}{8}$ $B. \dfrac{5}{3}$ $C. 2$ $D. \dfrac{17}{7}$ $E. \dfrac{5}{2}$

Invalid username
Login to AoPS