Difference between revisions of "2004 AMC 10B Problems/Problem 6"

m (Solution)
(Solution)
 
Line 5: Line 5:
 
<math> \mathrm{(A) \ } 98! \cdot 99! \qquad \mathrm{(B) \ } 98! \cdot 100! \qquad \mathrm{(C) \ } 99! \cdot 100! \qquad \mathrm{(D) \ } 99! \cdot 101! \qquad \mathrm{(E) \ } 100! \cdot 101! </math>
 
<math> \mathrm{(A) \ } 98! \cdot 99! \qquad \mathrm{(B) \ } 98! \cdot 100! \qquad \mathrm{(C) \ } 99! \cdot 100! \qquad \mathrm{(D) \ } 99! \cdot 101! \qquad \mathrm{(E) \ } 100! \cdot 101! </math>
  
==Solution==
+
==Solution 1==
  
 
Using the fact that <math>n! = n\cdot (n-1)!</math>, we can write:
 
Using the fact that <math>n! = n\cdot (n-1)!</math>, we can write:
Line 12: Line 12:
  
 
We see that <math>\boxed{\mathrm{(C) \ } 99! \cdot 100!}</math> is a square, and because <math>11</math>, and <math>101</math> are primes, none of the other four choices are squares.
 
We see that <math>\boxed{\mathrm{(C) \ } 99! \cdot 100!}</math> is a square, and because <math>11</math>, and <math>101</math> are primes, none of the other four choices are squares.
 +
 +
 +
==Solution 2==
 +
Notice that <math>99! \cdot 99!</math> is a perfect square (obviously). Also, <math>100 = 10^2</math>. Thus,
 +
<cmath>(99!)^2 \cdot 10^2 = 99! \cdot 100!</cmath>
 +
is a perfect square, so the answer is <math>\boxed{\mathrm{(C) \ } 99! \cdot 100!}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 18:48, 26 July 2020

Problem

Which of the following numbers is a perfect square?

$\mathrm{(A) \ } 98! \cdot 99! \qquad \mathrm{(B) \ } 98! \cdot 100! \qquad \mathrm{(C) \ } 99! \cdot 100! \qquad \mathrm{(D) \ } 99! \cdot 101! \qquad \mathrm{(E) \ } 100! \cdot 101!$

Solution 1

Using the fact that $n! = n\cdot (n-1)!$, we can write:

\begin{align} A&=98! \cdot (99\cdot 98!) = 99 \cdot (98!)^2 = 11\cdot3^2\cdot(98!)^2 \\ B&=100 \cdot 99 \cdot (98!)^2 = 11\cdot10^2\cdot3^2\cdot( 98!)^2 \\ C&=100\cdot (99!)^2 = 10^2\cdot (99!)^2\\ D&=101\cdot 100\cdot (99!)^2 = 101 \cdot 10^2 \cdot (99!)^2\\ E& =101\cdot (100!)^2 \end{align}

We see that $\boxed{\mathrm{(C) \ } 99! \cdot 100!}$ is a square, and because $11$, and $101$ are primes, none of the other four choices are squares.


Solution 2

Notice that $99! \cdot 99!$ is a perfect square (obviously). Also, $100 = 10^2$. Thus, \[(99!)^2 \cdot 10^2 = 99! \cdot 100!\] is a perfect square, so the answer is $\boxed{\mathrm{(C) \ } 99! \cdot 100!}$.

See also

2004 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png