Difference between revisions of "2006 AIME A Problems/Problem 2"

 
(added sol)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
 +
By the [[Triangle Inequality]]:
 +
 +
<math>\log_{10} 12 + \log_{10} n > \log_{10} 75 </math>
 +
 +
<math>\log_{10} 12n > \log_{10} 75 </math>
 +
 +
<math> 12n > 75 </math>
 +
 +
<math> n > \frac{75}{12} = \frac{25}{4} = 6.25 </math>
 +
 +
Also:
 +
 +
<math>\log_{10} 12 + \log_{10} 75 > \log_{10} n </math>
 +
 +
<math>\log_{10} 12\cdot75 > \log_{10} n </math>
 +
 +
<math> n < 900 </math>
 +
 +
Combining these two inequalities:
 +
 +
<math> 6.25 < n < 900 </math>
 +
 +
The number of possible integer values for <math>n</math> is the number of integers over the interval <math>(6.25 , 900)</math> which is <math>892</math>
  
 
== See also ==
 
== See also ==
 
*[[2006 AIME II Problems]]
 
*[[2006 AIME II Problems]]

Revision as of 11:39, 14 July 2006

Problem

The lengths of the sides of a triangle with positive area are $\log_{10} 12$, $\log_{10} 75$, and $\log_{10} n$, where $n$ is a positive integer. Find the number of possible values for $n$.

Solution

By the Triangle Inequality:

$\log_{10} 12 + \log_{10} n > \log_{10} 75$

$\log_{10} 12n > \log_{10} 75$

$12n > 75$

$n > \frac{75}{12} = \frac{25}{4} = 6.25$

Also:

$\log_{10} 12 + \log_{10} 75 > \log_{10} n$

$\log_{10} 12\cdot75 > \log_{10} n$

$n < 900$

Combining these two inequalities:

$6.25 < n < 900$

The number of possible integer values for $n$ is the number of integers over the interval $(6.25 , 900)$ which is $892$

See also