Difference between revisions of "2006 AIME A Problems/Problem 3"

m
Line 8: Line 8:
 
Hence, we seek the number of threes in <math>\displaystyle 200!</math> decreased by the number of threes in <math>\displaystyle 100!.</math>
 
Hence, we seek the number of threes in <math>\displaystyle 200!</math> decreased by the number of threes in <math>\displaystyle 100!.</math>
  
There are <center><math>\displaystyle \lfloor \frac{200}{3}\rfloor+\lfloor\frac{200}{9}\rfloor+\lfloor \frac{200}{27}\rfloor+\lfloor\frac{200}{81}\rfloor =66+22+7+2=97</math></center>
+
There are  
  
 +
<math>\displaystyle \lfloor \frac{200}{3}\rfloor+\lfloor\frac{200}{9}\rfloor+\lfloor \frac{200}{27}\rfloor+\lfloor\frac{200}{81}\rfloor =66+22+7+2=97</math>
 
threes in <math>\displaystyle 200!</math> and  
 
threes in <math>\displaystyle 200!</math> and  
 
+
<math>\displaystyle \lfloor \frac{100}{3}\rfloor+\lfloor\frac{100}{9}\rfloor+\lfloor \frac{100}{27}\rfloor+\lfloor\frac{100}{81}\rfloor=33+11+3+1=48 </math>
<center><math>\displaystyle \lfloor \frac{100}{3}\rfloor+\lfloor\frac{100}{9}\rfloor+\lfloor \frac{100}{27}\rfloor+\lfloor\frac{100}{81}\rfloor=33+11+3+1=48 </math></center>  
 
  
 
threes in <math>\displaystyle 100!</math>
 
threes in <math>\displaystyle 100!</math>

Revision as of 14:29, 24 July 2006

Problem

Let $\displaystyle P$ be the product of the first $\displaystyle 100$ positive odd integers. Find the largest integer $\displaystyle k$ such that $\displaystyle P$ is divisible by $\displaystyle 3^k .$

Solution

Note that the product of the first $\displaystyle 100$ positive odd integers can be written as $\displaystyle 1\cdot 3\cdot 5\cdot 7\cdots 195\cdot 197\cdot 199=\frac{200!}{2(100)!}.$

Hence, we seek the number of threes in $\displaystyle 200!$ decreased by the number of threes in $\displaystyle 100!.$

There are

$\displaystyle \lfloor \frac{200}{3}\rfloor+\lfloor\frac{200}{9}\rfloor+\lfloor \frac{200}{27}\rfloor+\lfloor\frac{200}{81}\rfloor =66+22+7+2=97$ threes in $\displaystyle 200!$ and $\displaystyle \lfloor \frac{100}{3}\rfloor+\lfloor\frac{100}{9}\rfloor+\lfloor \frac{100}{27}\rfloor+\lfloor\frac{100}{81}\rfloor=33+11+3+1=48$

threes in $\displaystyle 100!$

Therefore, we have a total of $\displaystyle 97-48=049$ threes.


See also

Invalid username
Login to AoPS