2006 AMC 10B Problems/Problem 6

Revision as of 19:37, 13 July 2006 by Xantos C. Guin (talk | contribs) (Added problem and solution)


A region is bounded by semicircular arcs constructed on the side of a square whose sides measure $\frac{2}{\pi}$, as shown. What is the perimeter of this region?


$\mathrm{(A) \ } \frac{4}{\pi}\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } \frac{8}{\pi}\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } \frac{16}{\pi}$


Since the side of the square is the diameter of the semicircle, the radius of the semicircle is $\frac{1}{2}\cdot\frac{2}{\pi}=\frac{1}{\pi}$

Since the length of one of the semicircular arcs is half the circumference of the corresponding circle, the length of one arc is $\frac{1}{2}\cdot2\cdot\pi\cdot\frac{1}{\pi}=1$

Since the desired perimeter is made up of four of these arcs, the perimeter is $4\cdot1=4\Rightarrow D$

See Also

Invalid username
Login to AoPS