Difference between revisions of "2006 AMC 12A Problems/Problem 23"

Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
 +
Given a finite sequence <math>S=(a_1,a_2,\ldots ,a_n)</math> of <math>n</math> real numbers, let <math>A(S)</math> be the sequence
 +
 +
<math>(\frac{a_1+a_2}{2},\frac{a_2+a_3}{2},\ldots ,\frac{a_{n-1}+a_n}{2})</math>
 +
 +
of <math>n-1</math> real numbers. Define <math>A^1(S)=A(S)</math> and, for each integer <math>m</math>, <math>2\le m\le n-1</math>, define <math>A^m(S)=A(A^{m-1}(S))</math>. Suppose <math>x>0</math>, and let <math>S=(1,x,x^2,\ldots ,x^{100})</math>. If <math>A^{100}(S)=(1/2^{50})</math>, then what is <math>x</math>?
 +
 +
<math> \mathrm{(A) \ } 1-\frac{\sqrt{2}}{2}\qquad \mathrm{(B) \ } \sqrt{2}-1\qquad \mathrm{(C) \ } \frac{1}{2}\qquad \mathrm{(D) \ } 2-\sqrt{2}\qquad \mathrm{(E) \ }  \frac{\sqrt{2}}{2}</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 00:10, 11 July 2006

Problem

Given a finite sequence $S=(a_1,a_2,\ldots ,a_n)$ of $n$ real numbers, let $A(S)$ be the sequence

$(\frac{a_1+a_2}{2},\frac{a_2+a_3}{2},\ldots ,\frac{a_{n-1}+a_n}{2})$

of $n-1$ real numbers. Define $A^1(S)=A(S)$ and, for each integer $m$, $2\le m\le n-1$, define $A^m(S)=A(A^{m-1}(S))$. Suppose $x>0$, and let $S=(1,x,x^2,\ldots ,x^{100})$. If $A^{100}(S)=(1/2^{50})$, then what is $x$?

$\mathrm{(A) \ } 1-\frac{\sqrt{2}}{2}\qquad \mathrm{(B) \ } \sqrt{2}-1\qquad \mathrm{(C) \ } \frac{1}{2}\qquad \mathrm{(D) \ } 2-\sqrt{2}\qquad \mathrm{(E) \ }  \frac{\sqrt{2}}{2}$

Solution

See also