Difference between revisions of "2006 SMT/Advanced Topics Problems/Problem 5"

(Created page with "==Problem== Evaluate: <math> \sum_{k=1}^{\infty}\frac{1}{k\sqrt{k+2}+(k+2)\sqrt{k}} </math> ==Solution== We try to rationalize the denominators. We have <math> \frac{1}{k\sqrt{k...")
 
(No difference)

Latest revision as of 20:58, 27 May 2012

Problem

Evaluate: $\sum_{k=1}^{\infty}\frac{1}{k\sqrt{k+2}+(k+2)\sqrt{k}}$

Solution

We try to rationalize the denominators. We have $\frac{1}{k\sqrt{k+2}+(k+2)\sqrt{k}}=\frac{k\sqrt{k+2}-(k+2)\sqrt{k}}{(k\sqrt{k+2})^2-((k+2)\sqrt{k})^2}=\frac{(k+2)\sqrt{k}-k\sqrt{k+2}}{2(k)(k+2)}$.


Now, since the denominator is factorable, we try decomposing the fraction. We have $\frac{(k+2)\sqrt{k}-k\sqrt{k+2}}{2(k)(k+2)}=\frac{(k+2)\sqrt{k}}{2(k)(k+2)}-\frac{k\sqrt{k+2}}{2(k)(k+2)}=\frac{\sqrt{k}}{2k}-\frac{\sqrt{k+2}}{2(k+2)}$.


Finally, we have $\sum_{k=1}^{\infty}\left(\frac{\sqrt{k}}{2k}-\frac{\sqrt{k+2}}{2(k+2)}\right)=\frac{1}{2}-\frac{\sqrt{3}}{6}+\frac{\sqrt{2}}{4}-\frac{2}{8}+\frac{\sqrt{3}}{6}-\frac{\sqrt{5}}{14}+\cdots$. From here, we see that everything cancels except for the $\frac{1}{2}$ and $\frac{\sqrt{2}}{4}$, so our final answer is $\frac{1}{2}+\frac{\sqrt{2}}{4}=\boxed{\frac{2+\sqrt{2}}{4}}$.

See Also

2006 SMT/Advanced Topics Problems