Difference between revisions of "2006 SMT/Calculus Problems/Problem 5"

(Created page with "==Solution== Using integration by parts, we find that the desired integral is equal to: <cmath>\begin{align*} \int(x\tan^{-1}x)dx &= \frac{x^2}{2}\tan^{-1}x-\int\frac{x^2}{2...")
 
m (Solution)
 
Line 1: Line 1:
 +
==Problem 5==
 +
Evaluate: <math> \int(x\tan^{-1}x)dx </math>
 +
 
==Solution==
 
==Solution==
  

Latest revision as of 18:31, 14 January 2020

Problem 5

Evaluate: $\int(x\tan^{-1}x)dx$

Solution

Using integration by parts, we find that the desired integral is equal to:

\begin{align*} \int(x\tan^{-1}x)dx &= \frac{x^2}{2}\tan^{-1}x-\int\frac{x^2}{2(x^2+1)}dx\\ &=\frac{x^2}{2}\tan^{-1}x-\frac{1}{2}\int\frac{x^2}{x^2+1}dx\\ &=\frac{x^2}{2}\tan^{-1}x-\frac{1}{2}\int \left(1-\frac{1}{x^2+1}\right)dx\\ &=\frac{x^2}{2}\tan^{-1}x-\frac{1}{2}\left(\int 1 dx + \int\frac{-1}{x^2+1}dx\right)\\ &=\frac{x^2}{2}\tan^{-1}x-\frac{1}{2}\left(x+\cot^{-1}x \right)\\\ \end{align*}

Therefore the answer is $\boxed{\frac{x^2}{2}\tan^{-1}x-\frac{1}{2}\left(x+\cot^{-1}x \right)}$