Difference between revisions of "2006 USAMO Problems/Problem 2"

m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
For a given positive integer '''k''' find, in terms of '''k''', the minimum value of <math>N</math> for which there is a set of <math>2k+1</math> distinct positive integers that has sum greater than <math>N</math> but every subset of size '''k''' has sum at most <math>\frac{N}{2}</math>.
 
== Solution ==
 
== Solution ==
 
== See Also ==
 
== See Also ==
 
*[[2006 USAMO Problems]]
 
*[[2006 USAMO Problems]]

Revision as of 11:03, 12 July 2006

Problem

For a given positive integer k find, in terms of k, the minimum value of $N$ for which there is a set of $2k+1$ distinct positive integers that has sum greater than $N$ but every subset of size k has sum at most $\frac{N}{2}$.

Solution

See Also

Invalid username
Login to AoPS