|
|
Line 1: |
Line 1: |
− | == Problem==
| |
− | Consider the <math>12</math>-sided polygon <math>ABCDEFGHIJKL</math>, as shown. Each of its sides has length <math>4</math>, and each two consecutive sides form a right angle. Suppose that <math>\overline{AG}</math> and <math>\overline{CH}</math> meet at <math>M</math>. What is the area of quadrilateral <math>ABCM</math>?
| |
| | | |
− | {{image}}
| |
− |
| |
− | <math>\text{(A)}\ \frac {44}{3}\qquad \text{(B)}\ 16 \qquad \text{(C)}\ \frac {88}{5}\qquad \text{(D)}\ 20 \qquad \text{(E)}\ \frac {62}{3}</math>
| |
− |
| |
− | ==Solution==
| |
− | <math>88/5\ \mathrm{(C)}</math>
| |