Difference between revisions of "2007 AMC 10B Problems/Problem 18"

m (Solution 2)
(Solutions)
Line 25: Line 25:
  
 
==Solutions==
 
==Solutions==
 +
[asy]
 +
unitsize(0.6cm);
 +
pair A,B,C,D;
 +
A=(-2.4,2.4);
 +
B=(2.4,2.4);
 +
C=(2.4,-2.4);
 +
D=(-2.4,-2.4);
 +
draw(A--B--C--D--cycle,linewidth(0.7));
 +
draw(B--D,linewidth(0.7));
 +
label("<math>A</math>",A,NW);
 +
label("<math>B</math>",B,NE);
 +
label("<math>C</math>",C,SE);
 +
label("<math>D</math>",D,SW);
 +
label("2",(0,0),SE);
 +
for (int i=0; i<2; ++i){
 +
label("<math>r</math>",(-2.4,-1.2+2.4i),W);
 +
label("<math>r</math>",(-1.2+2.4i,2.4),N);
 +
label("<math>r</math>",(-1.5+3i,-1.5+3i),NW);
 +
}
 +
for(int i=0; i<2; ++i){
 +
for(int j=0; j<2; ++j){
 +
draw(Circle((-2.4+4.8i,-2.4+4.8j),2.4),linewidth(0.7));
 +
};
 +
}
 +
draw(Circle((0,0),1),linewidth(0.7));
 +
[/asy]
  
 
==Solution 1==
 
==Solution 1==

Revision as of 17:38, 25 February 2018

Problem

A circle of radius $1$ is surrounded by $4$ circles of radius $r$ as shown. What is $r$?

[asy] unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(7pt)); dotfactor=4;  real r1=1, r2=1+sqrt(2); pair A=(0,0), B=(1+sqrt(2),1+sqrt(2)), C=(-1-sqrt(2),1+sqrt(2)), D=(-1-sqrt(2),-1-sqrt(2)), E=(1+sqrt(2),-1-sqrt(2)); pair A1=(1,0), B1=(2+2sqrt(2),1+sqrt(2)), C1=(0,1+sqrt(2)), D1=(0,-1-sqrt(2)), E1=(2+2sqrt(2),-1-sqrt(2)); path circleA=Circle(A,r1); path circleB=Circle(B,r2); path circleC=Circle(C,r2); path circleD=Circle(D,r2); path circleE=Circle(E,r2); draw(circleA); draw(circleB); draw(circleC); draw(circleD); draw(circleE); draw(A--A1); draw(B--B1); draw(C--C1); draw(D--D1); draw(E--E1);  label("$1$",midpoint(A--A1),N); label("$r$",midpoint(B--B1),N); label("$r$",midpoint(C--C1),N); label("$r$",midpoint(D--D1),N); label("$r$",midpoint(E--E1),N); [/asy]

$\textbf{(A) } \sqrt{2} \qquad\textbf{(B) } 1+\sqrt{2} \qquad\textbf{(C) } \sqrt{6} \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 2+\sqrt{2}$

Solutions

[asy] unitsize(0.6cm); pair A,B,C,D; A=(-2.4,2.4); B=(2.4,2.4); C=(2.4,-2.4); D=(-2.4,-2.4); draw(A--B--C--D--cycle,linewidth(0.7)); draw(B--D,linewidth(0.7)); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("2",(0,0),SE); for (int i=0; i<2; ++i){ label("$r$",(-2.4,-1.2+2.4i),W); label("$r$",(-1.2+2.4i,2.4),N); label("$r$",(-1.5+3i,-1.5+3i),NW); } for(int i=0; i<2; ++i){ for(int j=0; j<2; ++j){ draw(Circle((-2.4+4.8i,-2.4+4.8j),2.4),linewidth(0.7)); }; } draw(Circle((0,0),1),linewidth(0.7)); [/asy]

Solution 1

You can express the line connecting the centers of an outer circle and the inner circle in two different ways. You can add the radius of both circles to get $r+1.$ You can also add the radius of two outer circles and use a $45-45-90$ triangle to get $\frac{2r}{\sqrt{2}} = r\sqrt{2}.$ Since both representations are for the same thing, you can set them equal to each other. \begin{align*} r+1&=r\sqrt{2}\\ 1&=r(\sqrt{2}-1)\end{align*} \[r = \frac{1}{\sqrt{2}-1} = \frac{\sqrt{2}+1}{2-1} = \boxed{\mathrm{(B) \ } 1 + \sqrt{2}}\]

Solution 2

You can solve this problem by setting up a simple equation with the Pythagorean Theorem. The hypotenuse would be a segment that includes the radius of two circles on opposite corners and the diameter of the middle circle. This results in a segment of length $2r+2$. The two legs are each the length between the centers of two large, adjacent circles, thus $2r$. Using the Pythagorean Theorem: \begin{align*} (2r+2)^2 = 2(2r)^2\\ 4r^2+8r+4=8r^2\\ r^2+2r+1=2r^2\\ r^2-2r-1=0\\ r=\frac{2+\sqrt{4-(-4)}}{2}=\frac{2+\sqrt{2}}{2}=\boxed{\mathrm{(B) \ } 1 + \sqrt{2}} \end{align*}

See Also

2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png