Difference between revisions of "2008 AIME II Problems/Problem 8"

(solution)
 
m (Solution: minor)
Line 9: Line 9:
 
By the [[trigonometric identity|product-to-sum identities]], we have that <math>2\cos a \sin b = \sin (a+b) - \sin (a-b)</math>. Therefore, this reduces to a [[telescope|telescoping series]]:  
 
By the [[trigonometric identity|product-to-sum identities]], we have that <math>2\cos a \sin b = \sin (a+b) - \sin (a-b)</math>. Therefore, this reduces to a [[telescope|telescoping series]]:  
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
\sum_{k=1}^{n} 2\cos(k^2a)\sin(ka) &= \sum_{k=1}^{n} \sin(k(k+1)a) - \sin((k-1)ka)\\
+
\sum_{k=1}^{n} 2\cos(k^2a)\sin(ka) &= \sum_{k=1}^{n} [\sin(k(k+1)a) - \sin((k-1)ka)]\\
&= -\sin(0) + \sin(2a) \\
+
&= -\sin(0) + \sin(2a)- \sin(2a) + \sin(6a) - \cdots - \sin((n-1)na) + \sin(n(n+1)a)\\
&\ \ \ - \sin(2a) + \sin(6a) \\
+
&= -\sin(0) + \sin(n(n+1)a) = \sin(n(n+1)a)
&\ \ \ + \cdots \\
 
&\ \ \ - \sin((n-1)na) + \sin(n(n+1)a)\\
 
&= \sin(n(n+1)a)
 
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  
Thus, we need <math>\sin \left(\frac{n(n+1)\pi}{2008}\right)</math> to be an integer; this can be only <math>\{-1,0,1\}</math>, which occur when <math>2 \cdot \frac{n(n+1)}{2008}</math> is an integer. Thus <math>1004 = 2^2 \cdot 251 | n(n+1) \Longrightarrow 251 | n, n+1</math>. It easily follows that <math>n = \boxed{251}</math> is the smallest such integer.  
+
Thus, we need <math>\sin \left(\frac{n(n+1)\pi}{2008}\right)</math> to be an integer; this can be only <math>\{-1,0,1\}</math>, which occur when <math>2 \cdot \frac{n(n+1)}{2008}</math> is an integer. Thus <math>1004 = 2^2 \cdot 251 | n(n+1) \Longrightarrow 251 | n, n+1</math>. It easily follows that <math>n = \boxed{251}</math> is the smallest such integer.
  
 
== See also ==
 
== See also ==

Revision as of 17:56, 15 April 2008

Problem

Let $a = \pi/2008$. Find the smallest positive integer $n$ such that \[2[\cos(a)\sin(a) + \cos(4a)\sin(2a) + \cos(9a)\sin(3a) + \cdots + \cos(n^2a)\sin(na)]\] is an integer.

Solution

By the product-to-sum identities, we have that $2\cos a \sin b = \sin (a+b) - \sin (a-b)$. Therefore, this reduces to a telescoping series: \begin{align*} \sum_{k=1}^{n} 2\cos(k^2a)\sin(ka) &= \sum_{k=1}^{n} [\sin(k(k+1)a) - \sin((k-1)ka)]\\ &= -\sin(0) + \sin(2a)- \sin(2a) + \sin(6a) - \cdots - \sin((n-1)na) + \sin(n(n+1)a)\\ &= -\sin(0) + \sin(n(n+1)a) = \sin(n(n+1)a) \end{align*}

Thus, we need $\sin \left(\frac{n(n+1)\pi}{2008}\right)$ to be an integer; this can be only $\{-1,0,1\}$, which occur when $2 \cdot \frac{n(n+1)}{2008}$ is an integer. Thus $1004 = 2^2 \cdot 251 | n(n+1) \Longrightarrow 251 | n, n+1$. It easily follows that $n = \boxed{251}$ is the smallest such integer.

See also

2008 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions