2009 AMC 8 Problems/Problem 21

Revision as of 09:31, 27 April 2012 by Brian22 (talk | contribs) (Problem)


Andy and Bethany have a rectangular array of numbers with $40$ rows and $75$ columns. Andy adds the numbers in each row. The average of his $40$ sums is $A$. Bethany adds the numbers in each column. The average of her $75$ sums is $B$. What is the value of $\frac{A}{B}$?

$\textbf{(A)}\ \frac{64}{225}     \qquad \textbf{(B)}\   \frac{8}{15}    \qquad \textbf{(C)}\    1   \qquad \textbf{(D)}\   \frac{15}{8}    \qquad \textbf{(E)}\    \frac{225}{64}$


First, note that $40A=75B=\text{sum of the numbers in the array}$. Solving for $\frac{A}{B}$, we get $\frac{75}{40} =\frac{15}{8} =\frac{A}{B}$. $\boxed{\text{D}}$.

Invalid username
Login to AoPS